
Gates Paul Isambert
zappathustra@free.fr

Version 0.2
May 2012

is part of the documentation is a general introduction to gates,Gates : a
presentation illustrating many of their properties in the abstract. en comes

a user manual for TEX, a complete reference for TEX, a user manual
for Lua and a complete reference for Lua. e manuals explain gates
in action, while the references are alphabetical lists of all actions
with their syntax.

is documentation doesn't contain very complex examples of
gates. To see gates in full regalia, you can have a look at PiTEX
(the set of files used to typeset this documentation) for (mostly)
TEX gates, and the Interpreter package, version 1.1, for Lua gates
(version 1.0, wasn't written with Gates). Speaking of Interpreter,
this documentationwaswrittenwith it, so it canbe read confortably
in a text editor (see gates-doc.txt).



At first sight, gates are just a convoluted way to define and execute 1.1 What are
gates, and what
are they good
for ?

macros. But they're better thought of as bricks to construct macros
in such a way that each brick can be independantly controlled, and
new bricks can be added to a wall already built. For each logical
step in a big macro, the user can decide whether to execute that
step, bypass it, add a new step before or after, etc. is way, you
give the user the ability to tweak your macro as s/he wishes.

Suppose for instance you write \BigMacro. \BigMacro does a
lot of interesting things : first it does A, then B, then – last but
not least – C. e problem with \BigMacro is that it's very good ;
so good that everybody uses it and wants to add his or her little
twist to it, because \BigMacro really entices creativity. You have
no time to add those twists yourself, nor do you think they'll
interest anybody but their authors. Yet you keep receiving emails
asking you to modify \BigMacro. Yes, \BigMacro is big, so most
users don't care to try and understand it ; even if they do, they're
not so sure how it works : in A, there seems to happen something,
and X becomes Y, and then in B, Y is passed to... or was it X ? Plus
those same people really don't want to copy one hundred lines
of code just to add their touch to it. \BigMacro is like a plate of
spaghetti : good, but spaghetti nonetheless, hard to decipher and
rearrange. A few people will be able to hack it, but it is lost on
users bold but lacking experience.

Gates are made to avoid that situation. \BigMacro will now be



made of the same logical steps, but they will be gates, which means
users will be able to control their behavior without ever looking at
how they're implemented. For instance, one person would prefer
to avoid step B in some cases ; if B is a gate, that can be done easily.
Another don't like B at all and wants to remove it altogether :
nothing simpler. A third person would like to get the output of B
and modify it a bit before C kicks in ; s/he just has to write a new
gate (which is like writing a macro) and add it after B ; whatever B
returns will be passed to that new gate instead of C, and whatever
the new gate returns will be passed to C. at's another thing with
gates : they pass arguments between them when one follows the
other ; they can even return arguments. at's nothing new in
Lua ; but in TEX, arguments handling is generally not so simple. In
most, if not all, programming languages, the following :

dosomething(makesomething(<argument>))

is evaluated as follows : <argument> is passed to makesomething,
whose return value is passed to dosomething. e equivalent in
TEX doesn't do that, however :

\dosomething{\makesomething{<argument>}}

Here \makesomething{<argument} is passed to \dosomething and



chaos is sure to ensue if the previous behavior is expected. Instead,
one must generally store whatever \makesomething `returns' in a
macro and pass that macro to \dosomething. With gates, however,
the passing of arguments can be mimicked : if two gates follow
each other in a list, whatever the first returns (no quotes here)
is passed to the second. In our case, if \makesomething is called
before \dosomething, the former will process its argument and
pass its return value (if any) to the latter. No special care is needed
to do so.

Another property of gates, obviously, is that they are reusable.
In the TEX world, however, it is customary to distinguish between
public macros, to be manipulated by users, and private ones,
traditionally marked by an @ in their names, and that lay users
should absolutely ignore. With gates, everything seems public.
at's indeed the very reason why gates exist : so that macros
are as hackable as possible, and users can do what they like with
them. If you're afraid that chaos might ensue (because users are
notoriously dangerous), don't worry too much : it is a little bit
harder to grasp how gates work than to turn @ into a letter so it
can be used in private macros ; a user who would manipulate gates
thus probably knows what s/he's doing, or at least that what s/he's
doing might break. (By the way, gates are very likely to contain
@-marked private macros anyway, if only because they don't make
sense outside the context of their use.)



If you want to use gates but still insist that users shouldn't
mess with them, there is another solution : don't document them.
Indeed, gates are useful only to the extent that other people know
where they occur and what they do. So documenting gates is an
essential step in exploiting them fully ; as will be said again below,
though, there is no need to explain what a gate does internally :
simply saying what arguments it takes, what it does with them
(conceptually), and what it returns, is enough. In other words,
you don't explain the code that makes up the gate, you explain its
function in the larger picture.

One last remark about gates, not expanded in this document :
they can be useful to create libraries, i.e. snippets of code to be
used in various places. Instead of writing macros to perform such
and such operation, you can write gates ; the difference is that they
can be easily added to existing code, and externally controlled.

ere are two types of gates : macro gates (or `m-gates' for short) 1.2 An overview
of (almost) all
actions

and list gates (`l-gates'). M-gates execute some code, like macros
in TEX or functions in Lua ; l-gates contain other gates (of either
type) and call them in turn, passing arguments between them ;
from now on, `gate' means a gate of either type. Typically, a big
macro is an l-gate with many subgates, themselves possibly l-gates
containing gates of a lower level still, and so on and so forth. en
one can say, `In that l-gate, I want this gate to be ignored' ; or `I
want to add my own gate to this l-gate, in such position', etc.



Defining and executing gates To define an m-gate, one uses the
def action ; the list action is used to declare an l-gate. Gates of
either type can then be added to an l-gate with add; by default, the
insertion is done at the end of the list, but a position relative to
other gates can be optionally specified. Gates can be removed with
the remove action.

A gate can also be defined by copying another gate ; in that case,
the new gate is identical to the copied one, except its status (see
below) is set to open, which is the default status when creating a
gate. When copying an l-gate, the list is copied too (also it is the
same subgates that occur in both l-gates).

To call a gate, oneuses execute (various shorthands are possible).
Executing an m-gate is not very different from executing a macro
or function : it performs its definition. e execution of an l-gate,
on the other hand, consists in calling the gates that were added to
it. Also, and most importantly, gates in a l-gate pass arguments
between them : the first gate receives the arguments passed to the
l-gate it belongs to, then passes them to the next gate, possibly
modifying some of those arguments by returning. (Returning
arguments depends heavily on the implementation ; see return

and associates in TEX, and autoreturn in Lua.)
For each language, see : defining and executing gates in TEX and

defining and executing gates in Lua.



Conditions Gates can be externally controlled in four ways. First,
all gates have a status: if it is open (which is default), the gate is
executed when encountered ; if it is close, it is ignored ; ajarmeans
that the gate will be executed the next time it is encountered, and
then its status will revert to close; skip is the opposite : the gate
will be ignored the next time, then it will revert to open. In short,
ajar and skipmean executing or ignoring the gate once. See status
in TEX and status in Lua.

Second, all gates may have a conditional: if it is true, the gate
is executed, and ignored otherwise. is allows gates to depend on
external states of affairs. But a gate's conditional takes the same
arguments as the gate itself, so the its value can also depend on
what is passed to the gate. us, what a gate does and why it does
it are kept distinct. See conditional in TEX and conditional in Lua.

ird, the same gate can be repeated with a loop: it is the same
thing as a conditional, and the gate's arguments are also passed
to it. e gate will be called repeatedly as long as the loop is true.
When a gate is repeated, it passes its returned arguments to itself,
and before that to the loop. It is as if the same gate had been added
several times in a row to the same l-gate. See loop in TEX and loop
in Lua.

Fourth, loopuntil is another kind of loop : the gate is repeated
as long as it is false ; also, loopuntil is evaluated after the gate,
so the latter is executed at least once. If a gate has both loop and



loopuntil, the latter is ignored. See loop-until in TEX and loop-until
in Lua.

Finally, in Lua a gate may also have an iterator; to put it simply,
it mimicks a for loop ; for instance, a gate may be called with a
table as its argument but actually be executed on every entry, if
the iterator is the pairs function. See iterator in Lua for details.

Actually, a gate doesn't have only one status, one conditional,
etc. Rather, it has one global set of conditions, and one local set
of conditions for each l-gate where it appears (note that if a gate
appears several time in the same l-gate, it has only one local set
of conditions). e global conditions are examined whenever the
gate is encountered, either when it is called directly with execute

or when it is called by an l-gate ; local conditions are examined in
the latter case only.

It is important to understand the relative order of evaluation
of the conditions, and how global and local conditions interact.
Suppose a gate is called directly with execute; then the following
happens : first, the gate's global status is checked ; if ajar or skip,
it is set back to close and open respectively ; if the original status
allows the execution of the gate (i.e. the status was open or ajar),
the gate's global conditional is then evaluated ; if it is true, and
the gate has neither loop nor loopuntil, the gate is executed
once ; otherwise, it is repeated as long as loop is true or as long as
loopuntil is false. Note that even if the gate is executed several



times, the status and conditional aren't reevaluated, only the loops.
e same is true with iterator in Lua.

Suppose now the gate occurs in an l-gate. en the same evalu-
ation happens, this time with the local values for that given l-gate.
If the gate is deemed good for execution, or rather, each time it
is executed (if a loop calls it several time), the global values are
evaluated again as we've just seen. In other words, when a gate
occurs in an l-gate, its global conditions are examined if and only if
the local conditions allows the execution of the gate, and each time
they prompt it. is means for instance that if a gate is globally
ajar and is encountered in an l-gate where it's local status is close,
its global status will not be reverted to open because it will simply
not be evaluated (of course, it can be evaluated elsewhere).

is may seem a bit complicated, but actually situations where
you have to specify both local and global conditions are rare (global
status is always a bit dangerous, because all the instances of the
gate are affected, which might not be expected if somebody reuses
an existing gate) ; also, you may very well open and close a gate
for whatever reasons, but if you use ajar and skip it means you're
controlling it quite tightly and you probably won't use a conditional
too.

e shorthand notation Defining gates, adding them to l-gates,
and setting their conditions, can be done with actions, as explained



above. But that can be tedious, because when you're building a
big macro (a big l-gate, rather), it's hard to see the larger picture :
you're adding gates one after the other, and you can't readily figure
out what the big l-gate looks like. It's as if you were looking at a
house brick by brick without being able to take a few steps back
and consider the whole building.

But entire gates, replete with subgates down to whatever level,
and specified for all conditions, can be created without ever men-
tioning any action. e overall architecture can be preserved,
because gates are defined and added to an l-gate at once. It is a bit
like writing a big macro or function, except you add a tag to each
chunk of code, for further reference. e shorthand notation isn't
explained further here, because it depends on the implementation
and works very differently in TEX and Lua : see TEX shorthand
notation and Lua shorthand notation.

Gate families Since gates are designed to be hacked, it is all the
more convenient if they have simple, descriptive names. Of course,
you can call a gate insftn, but InsertFootnotes, or any other
readable name, is definitely better ; a user can then easily browse
gates and find what s/he's looking for.

However, such significant names increase the risk that two gates
bear the same name and clash. is is avoided by creating gate
families. A family is simply a prefix added to a name's gate, so that



a gate whose name is MyGate is actually called MyFamily:MyGate.
But family are associated with calling commands in TEX and tables
in Lua, so that when a gate is mentioned without its family, it is
automatically added. For instances the \gates command in TEX
and the gates table in Lua are associated with the family called
gates, so the name of a gate manipulated with them is actually
gates:<name>.

You can define a new family, associated with a command or
table, with the new action ; gates manipulated by that command or
table will then have a real name which includes the family. us,
their apparent names can be identical to other gates, as long as
they belong to other families.

As said above, a gate's family is supplied when it is missing
from the gate's name. is means conversely that if the family
is specified in a gate's name, it is not added. So, if you mention
gate MyFam:MyGate, the family associated with the command or
table where the gate is mentioned isn't specified again. You can
thus very well use gates from other families without having to rely
on the associated command or table. In other words, there's no
hidden mechanism behind families : they're just prefixes added to
a gate's name, and the automatic addition of a family is just an
examination of a gate's name.

Although a command or table must be declared with new to work
properly, families themselves don't require that. Gate MyFam:MyGate



can be used even if MyFam hasn't been declared (and the declaration
can also take place later, so that the family is associated with a
command or table). In other words, the command/table-family
association is just a convenient way to make the names of your
gates unique without thinking about it, but you can also think
about it and use an explicit family prefix. See families in TEX and
families in Lua

If you get lost Gates can be quite complex. For instance, the big
l-gate that creates section headings in this document is made of 16
subgates and subsubgates (as I am writing this, at least). e main
function of the Interpreter package used to turn the source of this
document into proper TEX is made of more than 25 subgates (not
counting repeated ones), with 7 levels between the top l-gate and
the most deeply embedded m-gate.

ere are a few actions to make things clearer. First, you can
know whether a given gate is an m- or l-gate with type, which
returns 1 (for m-gates), 2 (for l-gates), or 0 (if the name you passed
isn't a gate). Similarly, a gate's status (either global or local to some
l-gate) can be queried with the status action, which returns 1, 2,
3 or 4, depending on whether the gate's status is open, ajar, skip
or close, and 0 if there is no gate with the given name.

You can loop over all the subgates in an l-gate with subgates,
and execute some code for each subgate.



e family associated with a command or table can be queried
by the family action.

Finally, gates can be explored more thoroughly with show and
trace. e show action prints (on the terminal and log file) a
gate's name, type, and global conditions (the loops are omitted
if not specified) ; if the gate is an l-gate, the same happens with
its subgates, except local conditions are shown ; and a subgate is
an l-gate itself, the process goes on. Subgates are displayed in a
manner similar to the TEX shorthand notation.

e trace action shows gates when they are encountered : it is
signalled whether they are executed or not (and why), and possibly
the arguments passed to them are mentioned too. Again, subgates
to an l-gate are marked as such.

See getting lost in TEX and getting lost in Lua

is part of the documentation explains how gates work in TEX.Gates in TEX

e way to load Gates depends on your format. In plain TEX, you 2.1 Loading and
using Gatesuse :

\input gates

In LaTEX :



\usepackage{gates}

And in ConTEXt :

\usemodule[gates]

Actions in TEX aren't executed with control sequences, but with
a calling command (by default, \gates), followed by an action's
name, followed by a space :

\gates action {...}

(Of course, the space can be the end of a line.)
Note that loading Gates in TEX doesn't automatically load the

Lua counterpart even in LuaTEX ; in other words, Gates in Lua
should be independantly loaded.

Here it is shown how gates are created, concatenated, executed, 2.2 Definition
and executionand how arguments are passed between them.

Defining gates Let's try an extremely simple example. You want to
define a macro which, when given a number, adds 3 to it, multiplies
everything by 2, and prints the result. How fascinating. Here's
how you'd do it with gates. First you define your m-gates with def:



\gates def {add} [1] {%

\gates return {#1+3}

}

\gates def {multiply} [1] {%

\gates return {(#1)*2}

}

\gates def {print} [1] {%

\the\numexpr#1\relax

}

e number of argument (up to nine) is given after the name,
between brackets, and can be omitted if the gate takes no argument.
e return action is discussed more thoroughly below; just note
for the moment that there is no need to add a comment at the
end of the line to avoid spurious space, because material after a
return is gobbled (so watch your \fi's !).

(Instead of def, we could use the edef action ; the difference is
the same as between TEX's \def and \edef. ere is no \gdef/\xdef
variants, because operations on gates are always globals.)

Now those gates should be added to an l-gate. Such a gate is
declared with list, and an optional number of arguments can be
specified too.

\gates list {operation} [1]



Finally we add the m-gates to the l-gate :

\gates add {add, multiply, print} {operation}

e add action can take one or more gates, separated by commas.
Examples of add with specified position can be found below.

Executing gates And that's it, our small \BigMacro is done. We
can call it, with 4 as argument, for instance, and it will print 14 ;
to do so, we use the execute action :

\gates execute {operation}{4}

Note thatm-gates can be executed too, although that is a convoluted
way to call a macro ; in this case, do not worry about the return
value, it simply vanishes. For instance, the following :

\gates execute {print}{5+2}

will produce 7. If we'd call multiply rather than print, nothing
would have happened, since it simply returns something, which
doesn't make sense outside an l-gate.

Execution can be called more directly as :



\gates operation {4}

I.e. instead of a gate action, you use the name of a gate, and that's
equivalent to calling execute with that gate. However, this can be
done if and only if the gate you want to call doesn't have the same
name as an action ; for instance, you can't do that with the add

gate, because there exists an action called add, so you have to use
execute instead.

Now suppose we'd like to add a substraction after the multipli-
cation – that is, suppose we're a user who wants to add his or her
touch to \BigMacro. Nothing simpler :

\gates def {substract} [1] {%

\gates return {#1-3}

}

\gates add {substract}[after multiply]{operation}

And now operation returns 11 when fed 4.is was done by simply
adding an optional argument to the add operation ; this specifies
where the new gate(s) should be added in the l-gate : by default,
it is the end of the list, but you can say first to put the gate(s)
at the beginning or before <name> or after <name> to make the
insertion before or after the gate called <name> ; instead of a name,
you can also use first or last to denote the first and last gates of



the list, so here we could have used before last instead of after
multiply.

You can also remove a gate from a list. After :

\gates remove {substract}{operation}

the l-gate operation is now the same as before.

Handling arguments One crucial properties of gates is that they
pass arguments between them. is was already illustrated by our
code above : operation takes one argument, which is passed to
add, multiply and print ; or rather, it is passed to add, and that
gate returns an argument which is passed to multiply, and again
to print.

Arguments work as follows : a gate called with execute should
be followed by as many arguments as it was declared with, just
like any other macro in TEX. An l-gate passes its arguments to its
first subgate ; and for two consecutive gates, the second receives
what the first returns.

To return arguments, you use the return action, as illustrated
above. It expects the same number of arguments as the gate where
it appears. For instance, add was declared with one argument, so
when it calls return, one argument is expected. But one might
want to return a different number of arguments ; in this case, one



can use return0, return1, return2, etc., up to return9. Also, the
return! action takes one big argument containing an indefinite
number of arguments to be returned ; for instance :

\gates return2 {one}{two}

\gates return! {{one}{two}}

are equivalent, and they're also equivalent to a simple return with
two arguments in a gate declared as taking two arguments.

Since l-gates execute no code, you can't call any version of return
with them ; but they automatically return whatever was returned
by their last gate, and that is passed whatever follows the l-gate.

Until now, we have implicitly assumed that all gates in the same
l-gate take the same number of arguments. at is not necessary :
two gates with a different number of arguments can occur in the
same l-gate ; consequently, a gate doesn't need to take the same
number of arguments as the l-gate it appears in. For instance, you
can very well declare an l-gate with 3 arguments, and add to it an
m-gate with 2 arguments and another one with 4. Let's do it, and
see what happens :

\gates list {mylist} [3]

\gates def {macro1} [2] {%

\immediate\write16{1: #1. 2: #2.}}



\gates def {macro2} [4] {%

\immediate\write16{1: #1. 2: #2. 3: #3. 4: #4.}}

\gates add {macro1, macro2} {mylist}

\gates execute {mylist} {one}{two}{three}

is will print :

1: one. 2: two

1: one. 2: two. 3: three. 4: .

e first two arguments of mylist are passed to macro1, and the
third is simply ignored. en the three arguments are passed to
macro2, along with a empty fourth one. In other words, the number
of arguments is adjusted so that every gate receives what it needs
and nothing more.

But haven't we said just above that a gate receives what the pre-
vious one returns ? Since macro1 returns nothing, shouldn't macro2
receive four empty arguments ? ings are actually a bit more
complicated to explain, but simpler to use : given two consecutive
gates A and B, the arguments passed to B are whatever A returns,
plus additional arguments taken from those that A received if
necessary (i.e. if B takes more arguments than A has returned). To
put it differently, when a gate returns n arguments, they simply
replace the first n arguments of the current arguments, which are



passed to the next gate. In our example, macro1 returned nothing,
so the arguments that it received were restored and passed to
macro2. Here is another example :

\gates list {mylist} [3]

\gates def {macro1} [2] {%

\immediate\write16{1: #1. 2: #2.}%

\gates return1 {ONE}}

\gates def {macro2} [4] {%

\immediate\write16{1: #1. 2: #2. 3: #3. 4: #4.}%

\gates return {first}{second}{third}{fourth}}

\gates def {macro3} [4] {%

\immediate\write16{1: #1. 2: #2. 3: #3. 4: #4.}}

\gates add {macro1, macro2, macro3} {mylist}

\gates execute {mylist} {one}{two}{three}

And this prints :

1: one. 2: two.

1: ONE. 2: two. 3: three. 4: .

1: first. 2: second. 3: third. 4: fourth.

It works as follows : macro1 uses the first two arguments from
mylist, and returns one ; macro2 thus takes that argument, plus



the second, third and fourth original arguments (the fourth being
empty, since mylist takes only three) ; four argument are returned,
which is all macro3 needs, so there is no empty argument.

As said above, l-gates automatically return what their last gates
return ; more accurately, an l-gate declared with n arguments
returns the same number of arguments, those being taken from
what the last gate returns plus additional arguments restored as
we've just seen. In our example, mylist will return first, second
and third (it takes, and thus returns, three arguments), because
macro3 returned nothing and the arguments that it received from
macro2 are restored. (Actually, returning doesn't mean anything
here because mylist doesn't appear in a l-gate itself.)

is behavior is quite convenient, because it means that when
a gate doesn't modify an argument, it doesn't have to bother to
return it.

Here it is explained how to change a gate's conditions. 2.3 Controlling
gates

Status e global status of a gate (i.e. its behavior wherever it is
encountered) can be set with the following actions : open!, ajar!,
skip! and close!, as in :

\gates ajar! {mygate, myothergate}



is also illustrates that you can set the status of several gates at
once, separating them with commas (spaces are ignored).

e local status (i.e. the behavior of a gate in a given l-gate) is
set with the same action without an exclamation mark, followed
by the l-gate where you want to specify the status :

\gates open {mygate, myothergate}{mylist}

But you can also use before <gate> and after <gate>, meaning
that the status of all gates before (resp. after) <gate> in the l-gate
will be set accordingly. For instance :

\gates close {before mygate}{mylist}

As an example of a status-controlled gate, let's consider the problem
of automatically removing the indentation of a paragraph. e
usual solution is :

\everypar={{\setbox0=\lastbox}}

e \everypar token list is inserted every time TEX begins a
paragraph ; assigning \lastbox to a box register removes it from
the list under construction : here the indentation box is thus
removed from the paragraph ; the assignment is done in a group



so box 0 remains unaffected. e problem is that other resources
might want to use \everypar ; if the exploitation of the token list
is always so direct, one resource might wipe another. With gates,
the solution is to plant an l-gate in \everypar ; then you can add
whatever gate to it without disturbing the other gates possibly
there too :

\gates list {everypar}

\gates def {noindent}{{\setbox0=\lastbox}}

\gates add {noindent}{everypar}

\everypar={\gates execute {everypar}}

But we were interested in status. As is, all paragraphs will be
unindented, because noindent will be executed for each paragraph.
Instead, we should close it with

\gates close {noindent}{everypar}

and situations triggering an unindented paragraph (for instance, a
section header) should call

\gates ajar {noindent}{everypar}

so that noindent will make its job once, and then close.



Conditional Status is useful, but it suffers one flaw : you have to
set it yourself. at's no problem when you're handling a local
situation like the previous one ; but things might a be a bit more
far-reaching. You might want X to influence Y, and X and Y might
not be related at all ; also, X might change more than once.

For more flexible control, gates can depend on a conditional,
for instance (illustrating both global and local setting) :

\gates conditional! {mygate}{\ifSomething}

\gates conditional {gate1, gate2}{mylist}{\ifSomethingElse}

Now, mygate will be executed only when \ifSomething is true, just
like gate1 and gate2 in mylist will be executed in mylist when
\ifSomethingElse is true. e situations where conditionals can
be put to use are countless. A preface in a book, for instance,
will certainly make some \ifSpecialChapter conditional true, and
many details will depend on that conditional : e.g. unnumbered
section headings, page number in roman numerals, etc. If those
are implemented with gates, setting \ifSpecialChapter as the
conditional for those gates will make them depend on the larger
picture (you could use status too, but the conditional is more
powerful because many different things can depend on it, not only
gates).

What constitutes a valid conditional ? Technically, whatever



fits texapi 's \ifexpression. Indeed, Gates is written with texapi,
and conditionals rely internally on \ifexpression. What then fits
\ifexpression ? First, any traditional TEX conditional, no matter
whether it's a primitive like \ifhmode or \ifcat or a macro defined
with \newif. Second, argument-taking conditionals, i.e. macros
working like

\ifXXX {<true>}{<false>}

can be used too (texapi itself defines a good deal of such condi-
tionals). In both cases, what should be set in conditional is the
test itself, not the <true> and <false> parts. For instance, with
\ifSomething and \ifSomethingElse above, the true branch and
the \else ... \fi continuation were left out of the picture. If you
used, say, \ifnum, you'd specify something like (note the necessary
space) :

\gates conditional {mygate}{mylist}{\ifnum0=1 }

With a texapi conditional you could use :

\gates conditional {mygate}{mylist}{\ifstring{foo}{bar}}

(Here of course we have specified stupid conditionals which are
always false ; more useful examples can be found below).



But \ifexpression (hence conditional) also allowsusing simple
logical operators : & means and, | means or, - means not, and
subexpressions can be created with braces. For instance, the
following two conditionals are equivalent and are true if the
absolute value of N is smaller than 100 (the space following an
operator is ignored) :

\ifnum N > -100 & \ifnum N < 100

-{\ifnum N < -99 | \ifnum N > 99 }

Pretty complex expressions can thus be assigned to a gate's con-
ditional. But things are better yet : conditionals take arguments,
the same as the gates they control, so that the test can depend
not only on external conditions but on what a gate receives. For
instance, with :

\gates conditional {mygate}{mylist}{\ifnum#1>0 }

mygate will be executed only when its first argument is positive.
Another example :

\gates conditional! {mygate}{-\ifstring{#1}{#2}}

Here, mygate will be executed only when its first two arguments



differ, no matter in which list mygate appear, since the global
conditional is set here.

If you don't want a gate to depend on a conditional anymore,
simply declare something like :

\gates conditional! {mygate}{\iftrue}

Loop ird type of control : the execution of a gate can be repeated
as long as some condition is true. To do so, you use the loop action
(with an exclamation mark if you want to set the global loop).
It takes the same stuff as conditional, and the gate's arguments
are passed to it too. If the material evaluates to true, the gate is
executed, then the material is reevaluated, and if it is true again
the gate is executed again, and so on and so forth, so obviously
something must happen so that the iteration stops.

When a gate repeats the arguments it returns are passed back
to itself, and before that to the loop. Here is an example :

\gates def {myloop} [1] {%

\immediate\write16{\the\numexpr#1}%

\gates return {#1+1}}

\gates loop! {myloop} {\ifnum\numexpr#1<5 }

\gates execute {myloop}{1}



is will print numbers from 1 to 4. Once 4 is printed, myloop
returns 5 (1+1+1+1+1, really), so the conditional controlling the
loop isn't true anymore and the iteration stops. If this happened
in an l-gate, the return value of myloop would be passed to the
next gate.

When a gate shouldn't be controlled by a loop anymore, you
can use noloop (with or without an exclamation mark) :

\gates noloop! {mygate}

Loop until You can specify another type of loop with loopuntil:
it works like loop, except the gate is repeated as long as the
material evaluates to false. Also, the evaluation takes place after
the gate is executed, which means that the gate is always executed
at least once ; arguments are repeatedly passed to the gate and
the conditional as with loop, except loopuntil always receives
the return values of the gate it controls (whereas on the first
evaluation loop uses the arguments passed to gate, not what it
returns). Here's the previous gate rewritten with loopuntil; it will
work slightly differently :

\gates def {myloop} [1] {%

\immediate\write16{\the\numexpr#1}%

\gates return {#1+1}}



\gates loopuntil! {myloop} {\ifnum\numexpr#1>4 }

\gates execute {myloop}{1}

(e difference with the previous version is that here myloop

will be executed at least once, even if a number larger than 4 is
passed to it. Also, it is important to use \ifnum\numexpr#1>4 and
not \ifnum\numexpr#1=5 ; the latter will work if myloop is always
executed with a number smaller than 5, but it will enter an infinite
loop otherwise, since the condition will never be true.)

If you want a gate to stop being controlled by loopuntil, use
noloopuntil.

Note that if both loop and loopuntil are specified, the latter is
ignored.

e shorthand notation allows you to define gates (e.g. l-gates with 2.4 e
shorthand
notation

subgates), including conditions, in one go, without having to call
any gate actions. is makes complex code much more readable.

We've already seen the implicit call to execute by using a gate's
name instead of an action. You can also define m- and l- gates
more directly as follows :

\gates def {mygate} [2] {...}

\gates list {mylist} [2]



are equivalent to

\gates [mygate] [2] {...}

\gates (mylist) [2]

and the gate's name can be surrounded by space, it is trimmed
away. (e examples in this section all use this shorthand, but
they would be still valid with the explicit def and list instead.)
Second, following the number of arguments (or the gate's name
if the gate takes no argument), you can optionally specify global
conditions by using ? followed by a list of key = value pairs, where
the keys are status, conditional, loop and loopuntil ; for status,
the value should be one of open, ajar, skip or close, and for the
other conditions it should be a conditional as seen above. For
instance, here's the creation of an m-gate with status close and
some loop :

\gates [mygate] [2] ?{status = close,

loop = \ifnum#1<5 } {...}

is is equivalent to :

\gates [mygate] [2] {...}

\gates close! {mygate}



\gates loop! {mygate}{\ifnum#1<5 }

Note that the key is trimmed, as is the value if the key is status,
so space can be used to make things readable. In the case of a
conditional or loop's value, it isn't trimmed, because space can be
important, as in our example here where it delimits the number 5.
e space on the left is insignificant, though.

And here comes themost interesting shorthand : when declaring
an l-gate, you can define and add subgates at once by declaring
them just after the l-gate (and its optional number of arguments
and/or conditions, if any), using the same notations as with
implicit definitions : [mygate] or (mylist), optionally followed
by the number of arguments and/or the conditions, and with a
definition in case of an m-gate. e only difference is that the
conditions thus specified, if any, are the local ones relative to the
l-gate under construction. In other words, the following :

\gates (mylist) [2]

[mygate] [2] ?{status = ajar} {...}

(myotherlist) [1]?{loop = \ifnum#1<5 }

is equivalent to the much more verbose

\gates (mylist) [2]



\gates [mygate] [2] {...}

\gates (myotherlist) [1]

\gates add {mygate, myotherlist}{mylist}

\gates ajar {mygate}{mylist}

\gates loop {myotherlist}{mylist}{\ifnum#1<5 }

e shorthand notation allows you to see at once that mylist

contains mygate and myotherlist. But then, the latter is an l-gate
too, so it could be nice if we could add subgates to it in the same
way ; well, we can, it suffices to use a dot :

\gates (mylist) [2]

[mygate] [2] ?{status = ajar} {...}

(myotherlist) [1] ?{loop = \ifnum#1<5 }

. [mysubgate] [1]?{...} {...}

Here mysubgate will be added to myotherlist instead of mylist,
and the conditions, if any, will be the local conditions relative
to myotherlist, not mylist. Now what if myotherlist contains
an l-gate mysublist and you want to add subgates to that one ?
Well, you use two dots, and so on and so forth (I leave argument
numbers and conditions aside to make things simpler) :

\gates (mylist)



[mygate] {...}

(myotherlist)

. [mysubgate] {...}

. (mysublist)

. . [mysubsubgate] {...}

. . (yetanotherlist)

. . . (pleasestop)

etc., etc. e notation with dots work as follows : if we assume
that gates are added to l-gates of a given level, then dots denote
that level : no dot means that the gate is added to the l-gate of
level 0, i.e. the gate defined with list (mylist here), and is itself
of level 1, one dot means that the gate is added to an l-gate of level
1 and is itself of level 2 (e.g. mysubgate added to myotherlist),
and so on and so forth. Space around the dot is insignificant. e
only (obvious) restriction is that an l-gate at level n isn't available
anymore if followed by a gate at the same level or lower. is works
a bit like a table of contents : a subsection can't be added if there
isn't a section immediately above it. If you want to come back to a
gate at another level, just use less dots. For instance, if the code
above continued with

. . [gateX] {...}

[gateY] {...}



then gateX and gateY would be defined and added to mysublist

and mylist respectively. Of course, after gateX, yetanotherlist
and pleasestop aren't available for insertion anymore ; similarly,
after gateY, only mylist can host incoming gates, until a new l-gate
is declared.

It's nice to define subgates and add them to an l-gate at once,
but sometimes you might want to add a gate that already exists.
Using the above notation would redefine it. Of course, you can
still add and specify the position, but that's not very convenient.
So, besides parentheses and square brackets, you can use <mygate>
to add mygate without redefining it ; you can actually add several
gates at once, by separating them with commas. Local conditions
can then be set as above. For instance :

\gates (mylist)

[gateA] {...}

<gateB, gateC> ?{status = close}

(myotherlist)

. <gateD>

creates l-gate mylist with subgates gateA, gateB, gateC and my-

otherlist, gateB and gateC being locally closed, and myotherlist

containing gateD. is of course requires that gateB, gateC and
gateD already exist. If a gate thus added is an l-gate, the dot
notation can be used to add subgates to it.



e dot is actually only the default character to signal subgates.
You can use others by declaring them with subchar, as in :

\gates subchar #

e character thus declared do not replace existing ones (this
would be dangerous) but simply adds a new possibility. For obvious
reason, the character can't be [, (, < or ?.

New gate families can be created with the new action. 2.5 Gate
families

\gates new \MyGates {MyFamily}

Now \MyGates will work exactly like \gates, except that when it
manipulates gates, they will all have the prefix MyFamily: attached
to them. For instance :

\gates def {mygate}{...}

\MyGates def {mygate}{...}

defines two different gates, gates:mygate and MyFamily:mygate.
If a family is explicitly given in a gate's name, the family asso-

ciated with the calling command isn't added. e following two
lines are equivalent, for instance :



\gates def {MyFamily:mygate}{...}

\MyGates def {mygate}{...}

Of course the shorthand notation allows you to mix families :

\MyGates (MyList)

(MySubList)

. [MyGate] {...}

. [AnotherFamily:AnotherGate] {...}

e family associated with a command can be queried with the
family action. For instance :

\MyGates family

returns MyFamily.

Both type and status return a number : type returns 0 if there is 2.6 If you get
lostno gate with that name, 1 if it is an m-gate and 2 for an l-gate ;

status returns 0 for a non-existing gate, and 1 to 4 for open,
ajar, skip and close respectively ; status can also be used with
an exclamation mark to query global status :

\gates status {mygate}{mylist}



\gates status! {mygate}

e subgates action takes a definition as its second argument,
which will be executed with #1 replaced with the subgate's name.
For instance, the following shows all the subgates in mylist, with
their types :

\gates subgates {mylist}{%

\immediate\write16{%

#1 \ifnum\gates type {#1}=1

(m-gate)\else (l-gate)\fi}%

}

e show action can be used to display a gate's construction and
conditions. It is displayed as the shorthand notation. e trace

action takes a number and works as follows : if the number is
0, gates of the associated families aren't traced ; if it is 1, it is
mentionned if they are called (in an l-gate) and executed or not,
and why ; with 2, it works like 1, except the arguments passed to
the gates are shown too.



All actions are called with \gates, or any other calling commandReference
manual for TEX created with new, as follows :

\gates <action><space>

Executes <action> ; if there is a gate called <action>, this is equiv-
alent to \gates execute {<action>}. e name of the action (or
gate) is delimited by a space ; depending on <action>, arguments
might be required.

In what follows, <gate list> denotes a comma-separated list
of gates, e.g. mygate, myothergate, thirdgate ; <gate spec> de-
notes either a <gate list> or a relative position of the form before

<gate> or after <gate>

add <gate list>[<position>]<l-gate>

is adds all the gates in <gate list> to <l-gate>. If <position>
is missing, the addition occurs at the end of the l-gate. Otherwise,
it should be one of the following : first, meaning the gates will
be added at the beginning of the l-gate ; last, meaning they will
be added at the end (so this is similar to no <position>) ; before
<name>, and the addition will occur before gate <name> in the l-gate
(it should of course exist) ; after <name>, and the addition will
occur after gate <name>. Note that <name> can be first or last,
denoting the first and last gates in <l-gate> (before first and
after last are obviously synonymous with first and last).

ajar <gate spec><l-gate>

Sets the local status in <l-gate> to ajar for the gates in <gate

spec>.



ajar! <gate spec>

Sets the global status for the gates in <gate spec> to ajar.
close <gate spec><l-gate>

Sets the local status in <l-gate> to close for the gates in <gate

spec>.
close! <gate spec>

Sets the global status for the gates in <gate spec> to close.
conditional <gate spec><l-gate><conditional>

Sets the local conditional in <l-gate> to <conditional> for the
gates in <gate spec>. e conditional should be anything that fits
texapi 's \ifexpression.

conditional! <gate spec><conditional>

Sets the global conditional for the gates in <gate spec> to <con-

ditional>.
copy <gate1><gate2>

Defines <gate1> as <gate2> (either an m- or l-gate). e current
global status is also copied. If <gate2> is an l-gate, its gate list is also
copied, alongwith the current status of the gates it contains. On the
other hand, if <gate2> occurs in some l-gate(s), this information
isn't copied.

def <name>[<number of arguments>]<optional conditions>{<definition>}

Defines <name> as an m-gate with the given number of arguments
and definition. Such an assignment is always global. e number
of arguments, ranging from 0 to 9, is optional, in which case the



gate takes no argument. In other words, the following lines are
equivalent :

\gates def {mygate}{<definition>}

\gates def {mygate}[0]{<definition>}

Global conditions canbe specifiedwith ? followedby a key-value list,
where a key is one of status, conditional, loop and loopuntil and
the value is whatever fits the condition, as when explicitely calling
the associated action with an exclamation mark. For instance,

\gates def {mygate}?{conditional = \ifsomething} {...}

is equivalent to

\gates def {mygate}{...}

\gates conditional! {mygate}{\ifsomething}

In the key-value list, the key is always trimmed of surrounding
spaces, as is the value if the key is status ; values aren't trimmed
for other conditions, because space might be significant (e.g. with
\ifnum), but leading space is harmless (it is ignored by the internal
processing of the conditional).

Giving an gate's name between brackets instead of an action is
similar to using def with that gate :



\gates [mygate] [1] {...}

edef <name>[<number of arguments>]<optional conditions>{<definition>}

Similar to def, but performs \edef.
execute <name><arguments>

Executes gate <name>. e number of <arguments> should match
what <name> was defined with. If <name> is an m-gate, this is but a
convoluted way of calling a macro. If <name> is an l-gate, this will
launch sub-gates. Not that the execution depends on the gate's
global conditions. Using a gate's name as an action is similar to
using execute with that gate.

family

Returns the family associated with the calling command.
list <name>[<number of arguments>]<optional conditions><optional subgates>

Defines <name> as an l-gate with the given number of arguments
(can bemissing if 0).e optional global conditions can be specified
with ? followed by a key-value list ; see def above. e <optional

subgates> constitute the shorthand notation explained above,
defining and adding subgates to the l-gate under construction, and
specifying the local conditions too.

Giving an gate's name between parentheses instead of an action
is similar to using def with that gate :

\gates (mylist) [2]?{status = ajar}



loop <gate spec><l-gate><conditional>

Sets the localwhile-loop in <l-gate> to <conditional> for the gates
in <gate spec>. e conditional is the same as with conditional;
the difference is that the gates will be executed again as long as
the conditional is true, so there'd better be something somewhere
which makes it false.

loop! <gate spec><conditional>.

Sets the global while-loop for the gates in <gate spec> to <condi-

tional>.
loopuntil <gate spec><l-gate><conditional>

Sets the local until-loop in <l-gate> to <conditional> for the gates
in <gate spec>. e conditional is the same as with conditional;
the gates will be executed until the conditional is true ; this
means they will be executed at least once. If loop is also specified,
loopuntil is ignored.

loopuntil! <gate spec><conditional>.

Sets the global until-loop for the gates in <gate spec> to <condi-

tional>.
new <control sequence><family>

Defines <control sequence> as a calling command for gates, as-
sociated with <family>.

noloop <gate spec><l-gate><conditional>

Unsets the local while-loop in <l-gate> to <conditional> for the
gates in <gate spec>.



noloop! <gate spec>

Unsets the global while-loop for the gates in <gate spec>.
noloopuntil <gate spec><l-gate><conditional>

Unsets the local until-loop in <l-gate> to <conditional> for the
gates in <gate spec>.

noloopuntil! <gate spec>

Unsets the global until-loop for the gates in <gate spec>.
open <gate spec><l-gate>

Sets the local status in <l-gate> to open for the gates in <gate

spec>.
open! <gate spec>

Sets the global status for the gates in <gate spec> to open.
remove <gate list><l-gate>

Removes the gates in <gate list> (names separated by commas)
in <l-gate>.

return <arguments>

In an m-gate, pass <arguments> to the next one. ere should be
as many <arguments> as the gate was declared with. Any material
following the statement in the gate's definition will be gobbled.

return0, return1, return2 ... return8, return9

Makes the gate return the specified number of arguments, no
matter the number of arguments the gate was defined with.

return! <arguments>

Makes the gate return an indefinite number of arguments. If



<arguments> is empty, it is similar to 'return0' ; if <arguments>
contains one argument, it is similar to 'return1' ; if it contains two,
it is similar to 'return2', etc. An argument is defined as usual in
TEX : a token, or balanced text. For instance, in what follows the
second and third lines are equivalent ; the first does the same job
if and only if called inside a gate defined with three arguments
(otherwise chaos will ensue).

\gates return {one}{two}{three}

\gates return3 {one}{two}{three}

\gates return! {{one}{two}{three}}

show <gate>

Writes to the log and terminal <gate>'s type, its number of argu-
ments, global status, conditional, loops (if specified), and recursively
its subgates if <gate> is an l-gate (showing the local conditions).

skip <gate spec><l-gate>

Sets the local status in <l-gate> to skip for the gates in <gate

spec>.
skip! <gate spec>

Sets the global status for the gates in <gate spec> to skip.
status <gate><l-gate>

Returns the local status of <gate> in <l-gate> : 1 if the gate is
open, 2 if it is ajar, 3 if it is to be skipped, and 4 if it is closed ; if



there is no <gate> in <l-gate> for whatever reason (including if
there exists no such l-gate), returns 0.

status! <gate>

Returns the global status of <gate>.
subchar <character>

Defines <character> as denoting a subgate in the shorthand
notation. [, (, < and ? are forbidden.

subgates <l-gate><definition>

Executes <definition> with each gate in <l-gate>. In <defini-

tion>, #1 stands for the name of the subgate on each iteration.
type <name>

Returns 0 if <name> is not a gate, 1 if it is an m-gate and 2 if it is
an l-gate.

trace <number>

If <number> is 0, gate operations aren't reported ; if 1, encountered
gates are reported, along with their status and conditional when
necessary ; if 2, arguments passed to gates that are executed are
also displayed. Tracing affects only gates of the family associated
with the calling command.

In general, gates behave similarly in TEX and Lua, but the syn-Gates in Lua
tax obviously differs. Also, there is one situation where both
implementations diverge : when arguments are returned.



Gates in Lua aren't loaded automatically with the gates package. 4.1 Loading and
using gatesSo one of the following should be issued somewhere :

dofile("gates.lua")

require("gates.lua")

Actually dofile requires more precision, e.g. (in LuaTEX) :

dofile(kpse.find_file("gates.lua"))

On the other hand, require is a little bit more clever (in LuaTEX, it
uses kpathsea). Note that even if dofile is used, gates.lua won't
be loaded twice, because the file returns at once if gates already
exists.

In the above paragraphs, `in LuaTEX' was mentioned twice :
that's because Lua gates can be used in any Lua interpreter. Lua
is obviously required, but not LuaTEX. In other words, Lua Gates
don't rely on any special feature of Lua in LuaTEX (libraries, in
particular, aren't used).

e file gates.lua returns nothing when loaded ; it simply
creates the gates table, in which everything takes place until a new
one is created with a family. is means that all actions are fields
of the gates table.



Here's how to define and execute gates in Lua. 4.2 Definition
and execution

Defining gates e def action creates an m-gate ; it takes a table
with (for now) two entries : the entry at index 1 is the gate's name,
the entry at index 2 is the function performed by the gate. For
instance, we can translate our simple TEX example in Lua (since
the table is the only argument to def, the surrounding parentheses
can be removed) :

gates.def {"add", function (n) return n + 3 end}

gates.def {"multiply", function (n) return n *2 end}

gates.def {"print", print}

e function can be either an anonymous function created on the
fly, or a function variable, as with print. However, such a syntax
is cumbersome in Lua, so you can directly assign to an entry in
the gates table, provided it hasn't the same name as an action (so
it is impossible with the add gate, for instance) :

function gates.multiply (n)

return n * 2

end

Actually, entries in the gates table be assigned any type ; if a



function is assigned, a gate is created ; otherwise, gates behaves
as an ordinary table with an ordinary entry :

gates.mystring = "Hello"

print(gates.mystring)

However, the entry can't be redefined as a gate anymore ; if it is
assigned a function, it will be nothing more. In the following code,
bar is a gate, but foo isn't.

gates.bar = function () ... end

gates.foo = "hello"

gates.foo = function () ... end

But let's get back to proper gates. We want to add our m-gates to
an l-gate, which we declare beforehand with list:

gates.list {"operation"}

Like def, list takes a table as its single argument ; the only required
field is the gate's name at index 1. We can now add the m-gates to
the l-gate :

gates.add ({"add", "multiply", "print"}, "operation")



e add action takes a table containing subgates as its first argu-
ment, and a string representing the l-gate where the insertion is
done as its second. If you add a single subgate, the first argument
can be a string. More on add below.

Executing gates We can now execute our l-gate :

gates.execute ("operation", 4)

and 14 will be printed on the terminal. e execute action takes a
gate as its first arguments, and then the arguments that are to be
passed to the gate. Again, this syntax is a bit cumbersome, and
gates can be executed more naturally as :

gates.execute.operation(4)

or simpler, but provided the gate doesn't share a name with an
action :

gates.operation(4)

e last two variants also let you retrieve the gate itself as a
function, instead of calling it :



x = gates.execute.operation

callback.register("process_input_buffer", gates.operation)

Now we can define another m-gate and add it to operation,
specifying the position :

gates.substract = function (n) return n-3 end

gates.add ("substract", "operation", "after multiply")

And now operation returns 11 when fed 4. is was done by
simply adding an optional third argument to the add operation ;
this specifies where the new gate(s) should be added in the l-gate :
by default, it is the end of the list, but you can say first to put
the gate(s) at the beginning or before <name> or after <name> to
make the insertion before or after the gate called <name> ; instead of
a name, you can also use first or last to denote the first and last
gates of the list, so here we could have used before last instead
of after multiply.

Finally, you can also remove a gate :

gates.remove("substract", "operation")

and now operation is what it was before.



Handling arguments When a gate is called, it may take arguments ;
in the case of an l-gate, those arguments are passed to each subgates,
one after the other. Unlike gates in TEX, though, if a gate expects
more arguments than passed to the l-gate it belongs too, no empty
argument is added. For instance :

gates.mygate = function (a, b)

print ("First: " .. tostring(a),

"Second: " .. tostring(b))

end

gates.list {"mylist"}

gates.add ("mygate", "mylist")

gates.mylist("one")

will print :

First: one Second: nil

Also, there is by default no `common argument pool', as there
was in TEX : a gate (in an l-gate) receives what the previous one
returns and nothing else ; in other words if l-gate L receives four
arguments and subgate A returns only three, then subgate B will
receive three arguments. Consequently, all gates should return
properly if arguments are to be passed.



But that is only default behavior. Lua gates can be made to work
like TEX gates (to some extent), by using autoreturn:

gates.autoreturn ("mygate", true)

gates.autoreturn ("mygate", "mylist", true)

When autoreturn is set for a gate (either globally, as in the first line,
or locally, as in the second), missing arguments will be restored
when the gate returns. To qualify as a missing argument, the
following conditions should hold : first, the value is nil (i.e. either
nil was explictly returned, or nothing was returned) ; second, no
real argument follows. For instance, suppose mygate is defined as
follows :

gates.mygate = function (A, B, C, D)

return nil, X

end

If autoreturn is false, the following gate will receive nil and X ; if
it is true, the arguments will be restored to nil, X, C and D ; the
first argument isn't restored, even though it is nil, because it is
followed by real argument X.

One can also uses autoreturn to completely disregard whatever
a gate returns ; this happens when autoreturn is a function instead



of a boolean ; the function is passed the original arguments given
to the gate, and what it returns overrides the gate's return values.
For instance, given the same definition of mygate, if autoreturn
is :

gates.autoreturn ("mygate",

function (A, B, C, D) return D, C, B, A end)

then no matter what mygate returns (including what it returns
on several iterations of itself, if any), the following gate will
always receive the original arguments in reverse order. is can
be particularly useful if the gate is controlled by an iterator, in
which case the arguments it receives (e.g. the entries of a table)
differ from the original ones (e.g. the table itself), yet you still
want to pass the latter to the following gate.

L-gates automatically returns whatever their last gate returns.
Also, unlike the TEX implementation (but in line with the Lua
language), when a gate returns outside an l-gate, the returned
values can be used, as with any other function.

Here it is explained how gates can be controlled externally. 4.3 Controlling
gates

Status A gate's status can be set with the open, ajar, skip and
close actions ; they take at least one argument, either a table :



gates.open ({"mygate", "myothergate"})

or a simple string if only one gate is to be affected :

gates.open ("mygate")

With one argument, the actions set the global status ; if a second
argument is present, it is the l-gate where the local status is to be
set :

gates.ajar ({"mygate", "myothergate"}, "mylist")

In this case, the first argument can denote a relative position of
the form before <gate> or after <gate> :

gates.ajar ("before mygate", "mylist")

Conditional To make a gate depends on an external state of affair
rather than status only, conditional can be used. e syntax is the
same as for status, except a second (in case of global conditional)
or third (in case of local conditional) argument is given. is
should be a function, and the gate's execution depends on what
the function returns : the gate is executed the function returns
nothing or false. e arguments that are to be passed to the gate



are passed beforehand to the conditional function. For instance, if
a gate receives arguments A and B, and its conditional function is
ControlFunction, then the gate's execution can be schematized
as :

if ControlFunction(A, B) then

-- Execute gate

end

If you don't want a gate to depend on a conditional anymore, you
can declare something like :

gates.conditional ("mygate", "mylist",

function () return true end)

Loop e loop action allows a gate to be repeated ; the syntax is
the same as for conditional, and the loop will be repeated as long
as the function evaluates to true (as with a while loop). Also, the
gate's arguments are repeatedly passed to the loop conditional. To
delete a gate's loop, use loop with nil as the third argument. As
an example, the following will print number from 1 to 4 :

function gates.mygate (n)

print(n)



return n + 1

end

gates.loop("mygate", function (n) return n < 5 end)

gates.mygate(1)

Loop until e loopuntil action is like loop, except the gate
is repeated until the conditional evaluates to false. Also, the
conditional is evaluated after the gate is executed, so the execution
takes place at least once. If both loop and loopuntil are set for a
gate, the latter is ignored.

Iterator e iterator action is a bit more complex. If set, it is fed
the arguments passed to the gate and should return a function,
plus possibly a state, plus possibly an initial variable ; in other
words, it should return whatever fits a for loop in Lua. en the
function is called with the state and variable, and the gate itself is
called on whatever this function returns ; the process repeats until
the function returns nil as its first argument. As an example :

gates.mygate = function (key, value)

print("The value of " .. key .. " is " .. value)

end

gates.iterator ("mygate", pairs)

gates.mygate({x = 55, y = 22})



will print :

The value of x is 55

The value of y is 22

Here pairs was used to return the function, state and variable
mentioned above ; but of course you can make you own function :

gates.mygate = function (w)

print(w .. " has " .. #w .. " characters.")

end

gates.iterator ("mygate",

function (s)

local t = string.explode(s)

local i = 0

local function enum ()

i = i+1

return t[i]

end

return enum

end)

gates.mygate("two words")

And the result is :



two has 3 characters.

words has 5 characters.

Here the function registered in iterator produces a single function,
without a state, and goes through all the entries of the table created
by splitting the original string. In sum, what iterator expects is
what Lua's generic for expects, and understanding the latter is
understanding the former.

An important point to keep in mind when using iterator is
that there is a discrepancy between the arguments passed to the
gate and the ones it really processes ; in the first example, mygate is
called with a table, but it receives two strings. is means that its
definition doesn't match the way it is called ; in that respect, unlike
loop and associates above, you just can't impose an iterator on
a aready defined gate and expect everything to be fine, since its
definition probably won't match the arguments it will now receive.

Another point is the return values, if any ; during the iteration,
the gate's return values are ignored ; then the last ones are passed
to the following gate, possibly augmented with some of the original
arguments if autoreturn is true. Note that the original arguments
here are those passed to the gate before the iteration states. is
holds if autoreturn is a function too :

gates.mygate = function (what, ever)



-- Whatever.

end

gates.iterator ("mygate", pairs)

gates.autoreturn ("mygate",

function (t) return t end)

gates.mygate (mytable)

Here mygate will loop on the entries in mytable (thanks to pairs),
and once the iterations are over, mytable is returned.

Of course, iterator can be used with l-gates too ; that works
the same : whatever the iterator returns is simply passed to the
subgates. Finally, if a gate has either loop or loopuntil, iterator
is ignored.

Gates can be created and manipulated by actions, as we've done 4.4 e
shorthand
notation

up to now, but they can also be declared much faster. First, def
and list take tables as their arguments ; that is for a good reason :
entries indexed with certain keys are equivalent to actions. e
keys are autoreturn, status, conditional, loop, loopuntil and
iterator and setting them when declaring a gate is like globally
setting the associated action (except there is a single action for
status, which takes a string as its value : open, ajar, skip or close).
us the following defines an m-gate with global status ajar and a
loop:



gates.def {"mygate",

status = "ajar",

loop = function (n) return n < 5 end,

function (n)

print(n)

return n + 1

end}

Note that the entries can be given in any order as long as the gate's
name is at index 1 and its definition at index 2.

L-gates have another property : as said above, the entry at index
1 should be the gate's name ; but you can put tables representing
gates at index 2, 3, etc., and they represent the l-gate's subgates.
ose tables are the same as the ones passed to def and list;
the only difference is that setting of autoreturn, status, etc., is
local to the l-gate where they are added. e following code creates
l-gate mylist with subgates mygate and myothergate, the former
subject to a local loop :

gates.list {"mylist",

{"mygate", loop = function (n) return n < 5 end,

function (n)

print (n)

return n + 1



end},

{"myothergate",

function (n)

print("We're done!")

end}}

Since the subtables are the same as the tables passed to def and
list, it means that an l-gate thus declared can host subgates too :

gates.list {"mylist",

{"mysublist",

{"mygate", function () ... end},

{"myothergate", function () ... end}},

{"anothergate", function () ... end}}

If you want to add an already existing gate, you can do so either
by using a simple string instead of a table, or (if you want to
set status and associates) a table with the name at index 1 and
nothing at higher indices :

gates.list {"mylist",

"AnExistingSubgate",

{"AnExistingSubgateWithOption", status = "ajar"}}



Note however that the second version is similar in form to an
l-gate defined without subgates ; this means that you can't redefine
an l-gate thus, but the situations where you would like to do so
(redefining an existing l-gate, and redefining it without subgates,
and in shorthand notation) aren't many. In that case you should
use list and add instead. (On the other hand, if you do specify
subgates, redefinition will happen with an l-gate with that name
already exists ; in other words, it won't be interpreted as inserting
an existing l-gate and add subgates to it.)

e new action takes a string (the family name) as its sole argument 4.5 Gate
familiesan return a calling table :

MyGates = gates.new ("MyFamily")

MyGates can now be used like gates (to which is associated the
gates family), except MyFamily will be used as the family name
when necessary.

A table's family is stored in the family entry ; note that it is not
an action, hence not a function, but a string :

print(MyGates.family)



Both type and status return a number : type returns 0 if there is 4.6 If you get
lostno gate with that name, 1 if it is an m-gate and 2 for an l-gate ;

status returns 0 for a non-existing gate, and 1 to 4 for open, ajar,
skip and close respectively ; status can also be used with one or
two arguments, indicating global or local status respectively :

gates.status ("mygate")

gates.status ("mygate", "mylist")

e subgates action passes the names of all the subgates in a given
l-gate to a function. For instance, the following prints all mylist's
subgates and their types :

gates.subgates("mylist",

function (g)

local t

if gates.type(g) == 1 then

t = "(m-gate)"

else

t = "(l-gate)"

end

print (g, t)

end)



e show action can be used to display a gate's construction and
conditions. It is displayed as the shorthand notation. e trace

action takes a number and works as follows : if the number is
0, gates of the associated families aren't traced ; if it is 1, it is
mentionned if they are called (in an l-gate) and executed or not,
and why ; with 2, it works like 1, except the arguments passed to
the gates are shown too.

ere are some differences between gates in TEX and gates in Lua,Reference
manual for Lua owing to the differences in syntax between the two languages.

at said, the same operations can be found in both interfaces.
In what follows, <gate list> denotes either a table with gate

names at successive indices (e.g. {'mygate', 'myothergate'}) or
a single string denoting a single gate.; <gate spec> denotes either
a <gate list> or a relative position of the form before <gate>

or after <gate> (the latter case only if an l-gate is also specified,
obviously).

add (<gate list>, <l-gate>[, <position>])

Adds the gates in <gate list> to <l-gate>. e optional <posi-
tion> should be one of the following : first, meaning the gates
will be added at the beginning of the l-gate ; last, meaning they will
be added at the end (so this is similar to no <position>) ; before
<name>, and the addition will occur before gate <name> in the l-gate



(it should of course exist) ; after <name>, and the addition will
occur after gate <name>. Note that <name> can be first or last,
denoting the first and last gates in <l-gate> (before first and
after last are obviously synonymous with first and last).

ajar (<gate spec>[, <l-gate>])

Without <l-gate>, sets the global status for the gates in <gate

spec> to ajar. With <l-gate>, sets the local status in <l-gate> to
ajar for the gates in <gate spec>.

autoreturn (<gate spec>[, <l-gate>], <boolean or function>)

Without <l-gate>, sets the global autoreturn for the gates in
<gate spec> ; with <l-gate>, the local autoreturn is done. When
a gate's autoreturn is set to true, arguments will be restored if it
returns less than what it was passed ; if autoreturn is a function,
it is passed the original arguments passed to the gates and what
it returns will be the ultimate return values of the gate. In the
latter case, the gate's conditions are ignored, i.e. the arguments
passed to autoreturn are the ones fed to the gate before it loops
or iterates (if it does that).

close (<gate spec>[, <l-gate>])

Without <l-gate>, sets the global status for the gates in <gate

spec> to close. With <l-gate>, sets the local status in <l-gate>

to close for the gates in <gate spec>.
conditional (<gate spec>[, <l-gate>], <function>)

Without <l-gate>, sets the global conditional for the gates in <gate



spec> to <function>. With <l-gate>, sets the local conditional
in <l-gate> to <function> for the gates in <gate list>. at the
conditional is a function means that the gate(s) will be executed
only if <function> returns anything but nil.

copy (<gate1>, <gate2>)

Defines <gate1> as <gate2> (either an m- or l-gate). e current
global status is also copied. If <gate2> is an l-gate, its gate list is also
copied, along with the current status of the gates it contains. On the
other hand, if <gate2> occurs in some l-gate(s), this information
isn't copied.

def (<table>)

Defines an m-gate whose name is the entry at index 1 in <table>,
and the defintion the function at index 2 ; autoreturn, status,
conditional, loop and loopuntil can also be used as key to globally
specify those settings.

Assigning to an entry in the general gates table is a shorthand
for def; in other words, the following two lines are synonymous,
provided there isn't a gate action called foo.

gates.def {"foo", function (...) ... end}

gates.foo = function (...) ... end

In the second case, if what is assigned isn't a function, then a new
entry is simply added to the gates table, as if it were a simple



table, unless the index is an existing action or gate (in which case
an error is raised). Note that this entry will then be unavailable to
host a gate if redefined.

execute (<gate>[, ...])

Calls <gate> with the other arguments. ere exists two short-
hands : gates.<gate>(...), provided <gate> doesn't clash with an
action's name, and gates.execute.<gate>(...).ose shorthands
are also the only way to retrieve the gate itself instead of executing
it.

family

e family associated with a table created with new. is is a string,
not a function.

iterator (<gate spec>[, <l-gate>], <function>)

Without <l-gate>, sets the global iterator for the gates in <gate

spec> to <function>. With <l-gate>, sets the local iterator in
<l-gate> to <function> for the gates in <gate list>. e <func-
tion> is passed the gates' original arguments and should return a
function, plus possibly a state and also a variable ; then the function
will be called repeatedly with the state and variable and the gates
will be called on what the function returns until it returns nil

as the first argument. What the gates return is ignored until the
last iteration, in which case it is passed to the next gate (unless
autoreturn is set). To delete a gate's iterator, use the same action
with nil as <function> (but that's generally not a good idea, since



gates with iterators are tailored to the arguments the iterator
returns, not to the arguments they are called with).

list (<table>)

Declares an l-gate whose name is the entry at index 1 in <table>.
Additional entries can be specified as with def. Tables at indices
2, 3, etc., are subgates created and added at once to <table>,
with status and associates indicating local (not global) settings.
Existing gates can also be added without being redefined, by giving
their names (a simple string) instead of a full table, or a table with
nothing at indices 2 and higher.

loop (<gate spec>[, <l-gate>], <function>)

Without <l-gate>, sets the global while-loop for the gates in <gate

spec> to <function>. With <l-gate>, sets the local while-loop in
<l-gate> to <function> for the gates in <gate list>. e gates
will be executed again as long as <function> evaluates to true.
To delete a gate's while-loop, use the same action with nil as
<function>.

loopuntil (<gate spec>[, <l-gate>], <function>)

Without <l-gate>, sets the global until-loop for the gates in <gate

spec> to <function>. With <l-gate>, sets the local until-loop in
<l-gate> to <function> for the gates in <gate list>. e gates
will be executed again as long as <function> doesn't evaluate to
true. To delete a gate's until-loop, use the same action with nil as
<function>.



open (<gate spec>[, <l-gate>])

Without <l-gate>, sets the global status for the gates in <gate

spec> to open. With <l-gate>, sets the local status in <l-gate> to
open for the gates in <gate spec>.

remove (<gate list>, <l-gate>)

Removes the gates in <gate list> from <l-gate>.
show (<gate>)

Writes to the terminal (and log file, if in LuaTEX) <gate>'s type,
its number of arguments, global status, conditional, loops (if
specified), autoreturn if set to true, and recursively its subgates if
<gate> is an l-gate (showing the local settings).

skip (<gate spec>[, <l-gate>])

Without <l-gate>, sets the global status for the gates in <gate

spec> to skip. With <l-gate>, sets the local status in <l-gate> to
skip for the gates in <gate spec>.

status (<gate>[, <l-gate])

Without <l-gate>, returns the global status of <gate> ; with <l-

gate>, the local status is returned : 1 if the gate is open, 2 if it is
ajar, 3 if it is to be skipped, and 4 if it is closed ; if there <gate>

doesn't exist, of doesn't exist in <l-gate>, 0 is returned.
subgates (<l-gate>, <function>)

Executes <function> with each gate (represented by its name as a
string) in <l-gate>.



trace (<number>)

If <number> is 0, gate operations aren't reported ; if 1, encountered
gate are reported, along with their status and conditional when
necessary ; if 2, arguments passed to gates that are executed are
also displayed. Tracing affects only gates of the family associated
with the calling command.

type (<name>)

Returns the type of <name> : 0 if it isn't a gate, 1 if it is an m-gate,
2 if it is an l-gate.


	Gates: a presentation
	What are gates, and what are they good for?
	An overview of (almost) all actions
	Defining and executing gates
	Conditions
	The shorthand notation
	Gate families
	If you get lost


	Gates in TeX
	Loading and using Gates
	Definition and execution
	Defining gates
	Executing gates
	Handling arguments

	Controlling gates
	Status
	Conditional
	Loop
	Loop until

	The shorthand notation
	Gate families
	If you get lost

	Reference manual for TeX
	Gates in Lua
	Loading and using gates
	Definition and execution
	Defining gates
	Executing gates
	Handling arguments

	Controlling gates
	Status
	Conditional
	Loop
	Loop until
	Iterator

	The shorthand notation
	Gate families
	If you get lost

	Reference manual for Lua

