Specification of the Exim Mail
Transfer Agent

Exim Maintainers

Specification of the Exim Mail Transfer Agent

Author: Exim Maintainers

Copyright © 2017 University of Cambridge

Revision 4.90 19 Dec 2017

Contents

1. INTFOAUCTION ...ttt sttt ettt eeeeaes 1
1.1 EXIM dOCUMENTATION ..ottt 1
1.2 FTP @nd WED SITES ..ottt 2
1.3 MAIING LISIS ..ottt sttt e ee e st sesteesse s e beeseeneas 2
1.4 BUQ FEPOIS ..oveeeeeieiieeetet ettt ettt ettt et e st e b e e teesbesbesseessessasseessessessesseessessasenseensas 3
1.5 Where to find the EXim diStriDULIONcc.coveiiiriiieee e 3
1.6 LIMIEALIONS ..ottt ettt ettt b e bt e s et nesaeanan 3
1.7 Run time CONfIQUIAIONocuiieieiieceeeee ettt naas 4
1.8 CalliNG INTEITACE ..ottt aeaas 4
1.9 TEIMINOIOQY ..ottt ettt ettt b e e be st e s b e beeseesbessesseessessessenseensas 4

2. INCOFPOrated COAEocooiiiieeee ettt sttt ss e seeseennas 6

3. How Exim receives and delivers mailc..cocooiiiiiinieeee e 8
3.1 OVverall PhIlOSOPRYc.oouiiiieeiecee ettt saeaeeaens 8
3.2 POICY CONIIOL ...ttt ettt et bttt eebeesse b e ebeeseessesseeseensas 8
3.3 USEI FIHEIS .ottt ettt ettt b et et e st enenaen 8
3.4 Message identifiCationccoviiiiieieeceee e 9
3.5 RECEIVING MAII ..oeiiiiieeieeeeee ettt ettt et se b sbeese s e seeseennas 9
3.6 Handling an inCoOMING MESSAQJEcccveviirririeieieeieeeeteee ettt et ete st eeeesessesreeseessanens 10
3.7 Life Of @ MESSAGE ..ceviceieeieiieeee ettt ettt ettt e sttt esbeereeseenbe b 10
3.8 Processing an address fOr AElIVEIY ..ottt 11
3.9 Processing an address for VerifiCationc.cooveieiiiieicieee e 12
3.10 Running an individual FOULEEcoviiiiiiieieieieeeceee ettt 12
3.11 DUPIICALE AUAIESSESoovviiieeieiieieeeeete ettt ettt ettt esb e s beeaeesbessesreessensansens 13
3.12 Router PreCONAITIONSccieuieiiiicieeteceeeetee ettt ettt a e st a b s reesaessene s 13
3.13 DeliVery iN elc.ooveiiiieeeeeee ettt et 14
3.14 Retry MECRANISIMooiiiiieeeee ettt sttt be st seessena 15
3.15 Temporary delivery faIlUre ...ttt 15
3.16 Permanent delivery failure ...ttt 15
3.17 Failures to deliver DOUNCE MESSAQGEScccvecveriieieeiieiicieeeeeer ettt s seae 16

4. Building and installing EXim ... 17
4.1 UNPACKING ettt ettt ettt e et e st e b e beeseesse s e seessessesseessessassesseessensansens 17
4.2 Multiple machine architectures and operating Systemsc.cccecveveviiceecenececieienen, 17
4.3 PCRE TIDIATY .ottt ettt ns 17
4.4 DBM lIBIArI©Seeoviieieieiietetee ettt sttt sttt be et eneas 17
4.5 Pre-building configurationc.ooieiiiiiicceeeceee ettt 18
4.6 SUPPOIE FOF ICONV() eiueieieiiiriciiiciieeete ettt ettt ea et s ss e teebe s enaeneas 19
4.7 Including TLS/SSL encryption SUPPOItc.ccveveiieiiciiciiieeeeeeeteee et 19
4.8 UUSE OF LCPWIAPPELS ...eeeeeiieiieiieteeeteetteete ettt ettt ettt est b e teessessesseessessassesseessensansens 20
4.9 Including SUPPOI fOr TPVoviiiiieeieiecieceetee ettt sttt aa s 20
4.10 Dynamically loaded lookup module SUPPOItcceevviriieieieiicieieiece e 21
4.11 The DBUIIAING PrOCESSoviivieeieieieeeeeteete ettt ettt ettt esbeste e e b assesreesaessansens 21
4.12 Output fromM “MAKE”ooviiiieiieeeeeeee ettt e re s eneas 21
4.13 Overriding build-time options for EXimc.cooiiiiiiiieeceeeeeeeeeee e 21
4.14 OS-SpeCific NEAAET fIl€Sceeeeiiieeeeeee e 23
4.15 Overriding build-time options for the Monitorcccooveiiiiiceeee, 23
4.16 Installing Exim binaries and SCHPIScccveieciiriieicieeeeeeteee et 24
4.17 Installing info dOCUMENTALIONc.ooiiiiiiieeeeceeee e e 25
4.18 Setting up the SPOOI AIrECIONYocveieeeeiiiieeeee e 25
.19 TESHING ooeeiieieeiee ettt ettt ettt ettt b et e teese b teert e b e steeaeestenbeereeraensantens 25

iii

4.20 Replacing another MTA With EXIMccoooiiiiiiiceeeseeeeee e 26

4.27 UPGrading EXIM ...ttt 27
4.22 Stopping the Exim daemon 0N SOIariS ..o 27
. The EXim command liN@ ..o 28
5.1 Setting options by Program NAMEcccveirieireieeee e 28
5.2 Trusted and admin USEIScccooeriieiiiiiieieet ettt sttt 28
5.3 Command lIN€ OPLIONSooueiiieiiieiieee et 29
. The Exim run time configuration filec.coo 51
6.1 Using a different configuration fileccooiriiiiiiiiee e 51
6.2 Configuration file FOrmMat ..o s 52
6.3 File inclusions in the configuration filecccoeiiiiiie e 53
6.4 Macros in the configuration fileccooriiiie s 53
6.5 MaCIrO SUDSTITULIONoiiiiiiiiciiee et 53
6.6 RedefiniNg MACIOSc.ccooiiiieieieeee ettt 54
6.7 OVerriding MACKO VAIUESc.ooueuiieiiieieieieeieeee ettt eeens 54
6.8 Example Of MACIO USAJE ...c.oiieiiieiiieieeiee ettt 54
6.9 BUIIIN MACIOS ..ottt 54
6.10 Conditional skips in the configuration fileccoeiieiniii e 55
6.11 ComMMON OPLON SYNTAX ...ovouiieiiieiiieieee ettt 55
6.12 BOO0IEAN OPLIONS ..ottt sttt ettt eneas 55
B.13 INTEYET VAIUES ...ttt sttt st 56
6.14 OCtal INTEGET VAIUESceiiiiiiiieeee ettt 56
6.15 Fixed POiNt NUMDEIScoiiiiiiieiee et 56
B.16 TIME INTEIVAISoeiiieeee ettt sttt eneas 56
B.17 STNG VAIUES ...ttt sttt nes 56
6.18 EXPANAEA SIINGSooeiiiieiiiiteeee ettt 57
6.19 User and group NAMEScciriiiiiirieeeeet ettt sttt b e eneas 57
6.20 LISt CONSIIUCTION ..ottt ettt sttt eneas 57
6.21 Changing liSt SEPAratOrSccooeirieiieiee et 57
6.22 EMPLty HEMS N IISTS .oeiiieieiieee e 58
6.23 Format of driver configurationsccoooeiieiieneee s 58
. The default configuration file ... 60
7.1 Main configuration SEHINGScooveiririe s 60
7.2 ACL CONFIQUIALION ...ttt 63
7.3 Router CoONfIQUIAtIONc.oovoiiiieee et 66
7.4 Transport CONFIGUIALIONcc.ciiiiiice e 68
7.5 DefaUll reIrY TUIE ..ot 69
7.6 Rewriting ConfigUIrationcocioieiiiiie s 69
7.7 Authenticators configurationcccoooiiiiiee e 69
. Regular @XPreSSIONS ... 71
. File and database I00KUPSccooiiiiiiiiice e 72
9.1 Examples of different I00KUP SYNTaXxccccoeiveiiiineieeeee s 72
9.2 LOOKUPD TYPES ettt sttt bttt b et ene s 73
9.3 Single-Key I00KUP TYPESoveiiieiiieieieieee e 73
9.4 QuEry-StYle I0OKUD TYPES ..cooiiieiiieieieieee et 75
9.5 Temporary errors iN IOOKUPSc..eoueieiririiieieieieseseee ettt sttt 76
9.6 Default values in single-Key I00KUPSccoeiriiirieieeeeeeee s 76
9.7 Partial matching in single-Key l00KUPScccoviiririnieiiinseee e 77
9.8 LOOKUP CACKING ...ttt sttt 78

9.9 QUOLING I0OKUP LA ...ttt 78
9.10 MOre @about ANSADc.oiiiiiie ettt 79
9.11 Dnsdb [00KUP MOGIfIEIScuoiieiieiiieieieie e 79
9.12 Pseudo dnsdb reCord tYPEScoveieiririieieie et 80
9.13 Multiple dNSAD I0OKUPSc.coiriiiiieiirieiieee ettt 81
9.14 MOre about LDAP ...ttt e 81
9.15 Format Of LDAP QUETIEScuoieuiieiiieieeeee ettt 81
.16 LDAP QUOLING ...ttt sttt sttt be st ene s 82
9.17 LDAP CONNECLIONS ..ottt sttt st 82
9.18 LDAP authentication and control informationcccccooeiiriinenneieeeee 83
9.19 Format of data returned by LDAP ..o 85
9.20 MOre @aboUt NISH ..ot 85
.21 SQIL IOOKUPS ...vviteiiieieeieiteteit ettt ettt ettt ettt s e st s ese e ese e esenes 86
9.22 More about MySQL, PostgreSQL, Oracle, InterBase, and Redisc.ccccoevevenee. 86
9.23 Specifying the server in the QUETYc.cooiiiiieeee s 87
9.24 Special MySQL fEAUIESooveeiieieieieee e 87
9.25 Special POStgreSQL fEAtUIESc.ooveuiieiiiieie s 88
9.26 More about SQLITEoovoiieieieeeee et 88
9.27 MOre about REAIScouoiiiiiiiieeee ettt 88
10. Domain, host, address, and local part listsccccoeveiiniiiecn, 89
10.1 EXPANSION OF lISTS ...eiieiiieie et 89
10.2 Negated iteMS IN TISTScviiiiiiieie et 89
10.3 File NAmMES IN LISISoviieiiee et 90
10.4 An Isearch file is not an out-0f-liNe listcoieiiiee e 90
10.5 NAMEA IISTS ..ttt sttt 90
10.6 Named lists compared With Macrosccoceviviriii e 91
10.7 Named [ISt CACNING ..cvoiiiiiiee et 91
10.8 DOMAIN TISTS ...ttt ettt 92
T0.9 HOSTLISTS .ttt b ettt 94
10.10 Special host list PAEINSoviiiieieee e 94
10.11 Host list patterns that match by IP address ..., 94
10.12 Host list patterns for single-key lookups by host addresscccoeviveiineninecnen. 95
10.13 Host list patterns that match by host name ..., 96
10.14 Behaviour when an IP address or name cannot be foundccccccooeiinennennen. 97
10.15 Mixing wildcarded host names and addresses in host listsc.cceeveverinieiennnne. 97
10.16 Temporary DNS errors when looking up host informationcccccoeiieenneenen. 98
10.17 Host list patterns for single-key lookups by host name ... 98
10.18 Host list patterns for query-style I00KUPScoeeririiriineeeeeee e 98
10.19 AAreSS lISES ..ottt sttt 99
10.20 Case of letters in address liStSccoiveiieirieieee e 101
10.21 LOCAI PATTISTS ...ttt 101
11, STHNG EXPANSIONScooiiiiiiiiiee ettt sttt eaeneas 102
11.1 Literal text in expanded SIHNGScoiviiiiiiiiee e 102
11.2 Character escape sequences in expanded Stringsccccoeoveireereeneeneeneeee 102
11.3 Testing StriNg EXPaNSIONScceoieiriririeieieeet ettt sttt st seeenes 102
11.4 Forced expansion failure ... 103
11.5 EXPANSION ITEBIMS ..ottt st 103
11.6 EXPANSION OPEIrAtOrScccoiiiiriiieieiieieiete ettt sttt sttt 114
11.7 EXPaNSION CONAITIONSc.oiiiiiiiiieiieiieieetee ettt 120
11.8 Combining expansion CONAItIONScccceiriririeiieeceee e 127
11.9 EXPanSIion Variables ... 128
12, Embedded Perl 147

12.1 Setting up SO Perl Can De USEAccoivieiiiieiee e 147

12.2 Calling Perl SUDFOULINESc.ooiiiiiieiieec e 147
12.3 Calling Exim functions from Perlooiiiiieee e 148
12.4 Use of standard output and error by Perlcoooiiiiiiieeeeeee 148
13. Starting the daemon and the use of network interfacescccccccoeieeenen. 149
13.1 Starting a listening daemoncoooiiii e 149
13.2 Special IP [istening addreSSEScooeivieirieiieieeee e 150
13.3 Overriding local_interfaces and daemon_smtp_portsccccccevevevieieineniesieeenenne. 150
13.4 Support for the obsolete SSMTP (or SMTPS) protocolcccecvveereiinieineienee 150
13.5 IPV6 @ddreSs SCOPEScovviiiiriiieiieiisieeee ettt sttt 151
13.6 DiSabliNg IPVB ...ttt 151
13.7 Examples of starting a listening daemoncccooieiineineeeeeeeeeee 151
13.8 Recognizing the 10Cal NOSTc..cooiiiii e 152
13.9 Delivering 10 @ remote NOSTc..oiviiiiiiie e 152
14, Main configUIAtioNccooiiiiii e 153
141 MISCEIIANEOUS ..ottt sttt st 153
14.2 EXIM PATAMETEIS ..ottt sttt st 153
14.3 Privilege CONTIOIScvoiiiiiieee et 153
14,4 LOQQING -ttt b ettt ettt b ettt b e s bbbt bbbt ne e enen 154
14.5 FrOZEN MESSAGESooiiiiiiiiiiiieeee ettt sttt sttt enes 154
14.6 Data I00KUPSoveiiieee ettt sttt 154
14,7 MESSAQGE IS ...ttt sttt b ettt eaes 154
14.8 Embedded Perl STartup ..o 154
T4.9 D@EBIMON ..ottt ettt st ettt b e sttt ese b enen 154
14.10 RESOUICE CONIIOLouiiiiiteee ettt 155
14,17 POICY CONTIOIS ..ottt 155
14.12 CalloUt CACNE ...ttt 156
TA. A8 TS ettt b ettt b et n et n ettt b et a et 156
14.14 Local USer NANAING ...c..ovviiiiieieeee et 156
14.15 All incoming messages (SMTP and non-SMTP) ..o 157
14.16 NON-SMTP iNCOMING MESSAJESoovevirieriieiiieiiieteietee ettt 157
14.17 INCOMING SMTP MESSAJES ...cveviieiiieiieieiieeeeteeteee ettt 157
14.18 SMTP EXIENSIONS ..oooviiiiiieiieeee ettt 157
14.19 ProcCesSing MESSAGEScoerueieieiiriiieieieeet ettt sttt st seeenes 158
14.20 SYSIEM FIET .ottt 158
14.21 Routing and deliVEIYcooiiieee et 158
14.22 Bounce and warning MESSAJESccceeueirerririenieieiieiesiesteeee ettt ebe e sseeese e enes 159
14.23 Alphabetical list of Main OPiONSooveuiiririiicicc e 159
15. Generic options fOr FOULEISocooiiiiiii e 207
16. The @CCEPT FOURET ...t 221
17. The dNSIOOKUP FOURETooviiiiii e e 222
17.1 Problems With DNS [0OKUPScvrueuirieiieiirieiieeseteee e 222
17.2 Declining addresses by dnSIOOKUPcccvviiirieiiiiirieceeee e 222
17.3 Private options for dNSIOOKUPc.eerieirieiicieeeeee e 223
17.4 Effect of qualify_single and search_parents ... 225
18. The ipliteral FOUREK ... e 226
19. The iPlOOKUP FOULETcooiiiie et 227

Vi

20. The MANUAIFOULE FOUTEKoooiieeeeeeeeeeeeeeeee et e e e e e e e e e e e e e reeeeeeeeaernes 229

20.1 Private options for ManualroUeccoceiiieireieeee e 229
20.2 Routing rules in FOULE_IISTcoeiiiiiriiieeeee et 230
20.3 Routing rules in route_datac.cccceiririeieiriieieee e 231
20.4 Format of the list Of NOSEScc.ouiiiiii e 231
20.5 Format of 0Ne NOSE IEM ..ot 232
20.6 How the list Of NOSES IS USEAoeoviieiiieee e 232
20.7 HOW the OPLiONS @re USEAcoeiiiiriiriiieieieeiesieeee ettt 233
20.8 Manualroute EXamIPIESccoviriiiirieieee ettt 233
21. The qUEryprogram FOURETccoviiiiiirieieieeeteteee ettt sttt 236
22, TRE redir@Ct FOUTENcooiiiiiee ettt 238
22.1 RedireCtion dat@c.ooueieiiiiieee et 238
22.2 Forward files and address Verification ... 238
22.3 Interpreting redireCtion datacccocevevieiiirineee e 239
22.4 ltems in a non-filter redireCtion liStccoeoireiieine e 239
22.5 Redirecting t0 @ local MailbOXc.coiviriiiiiiiriieice e 239
22.6 Special items in redireCtion lISTSccoioieiiiei e 240
22.7 DUPIICAIE QUAIESSESoouiiiiiiieeet ettt 242
22.8 Repeated redireCtion eXPanSIioNccccciviririeieinireeeeee et 242
22.9 Errors in redireCtion lISTScccooieiiinie e 242
22.10 Private options for the redireCt roULerococoveiiiineiee e 242
23. Environment for running local transSPorts ... 251
23.1 CONCUITENE AEIIVEIIES ...t 251
23.2 UIAS @NA GIAS ...ttt bttt ettt 251
23.3 Current and home AIrECIONESc.oovvuiiiiiieeeeee e 252
23.4 Expansion variables derived from the address ... 252
24. Generic options fOr traNSPOISccoooiiiiiiiee s 253
25. Address batching in local transSports ... 260
26. The appendfile tranSPOrtco.oiiiiii e 262
26.1 The file and directory OPtiONScoeiiiiieeiee e 262
26.2 Private options for appendfilecooiioiiieiie e 263
26.3 Operational details for appendingcccceeoeeeireinieieeeeeeee e 272
26.4 Operational details for delivery to a New fileccooeeiieiniieeee, 274
26.5 Maldir AEIVEIY ..ottt 274
26.6 Using tags t0 record MESSAJE SIZEScc.ccveiriiriirieieieienieietetee ettt 275
26.7 Using @ MaildirSize fileccooueiiiiiiieeeee e 276
26.8 MalIStOre A IVEIYoouinieiiiieieeeee ettt 276
26.9 Non-special NeW file deIIVEIY ... 276
27. The autoreply traNSPOIT ..o 277
27.1 Private options for QUIOIEPIYcooieiiiieee e 277
28. The IMIP tranSPOIT ..ottt 280
29. The PIPe rANSPOIT ..ottt 282
29.1 CONCUITENT AEIIVEIY ..ottt 282

29.2 Returned Status And Ataeeeeeieeeeeeeeeeeeeeeeeeee e et e e e e e e e raeneeas 282

29.3 HOW the COMMEANGA IS FUN ..ouiiiiiiieiieiiee ettt 283
29.4 Environment VariabIES ..ot 284
29.5 Private options fOr PIPEceveirieiieieeeee e 284
29.6 Using an external local delivery agent ..o 289
30. The SMIP tFANSPOIT ..ottt 291
30.1 Multiple messages on a single CONNECLIONc.ccveeriririiiinireeeeeeeeee e 291
30.2 Use of the $host and $host_address variablesccocoveiiiiioieceieeeeee 291
30.3 Use of $tls_cipher and $tIs_peerdncccoeiireiiinieeeeeee s 291
30.4 Private options fOr SMIPcoieiiiieiee e 291
30.5 How the limits for the number of hosts to try are usedcccooeeireneincien, 302
31, AdAress FEWHITINGc.ooiiiiiiiiiee ettt 304
31.1 Explicitly configured address reWritingcocccoeeveineenieenneeeeeeseeee e 304
31.2 When does rewriting happen? ..o 304
31.3 Testing the rewriting rules that apply on iNPULccoiriiiiinieeeeeee 305
31.4 REWIITING TUIES ..ottt 305
31.5 REWTIITING PAIEINS ..ottt 306
31.6 Rewriting replaCemeENtS ...t 307
31.7 ReWrItING fIAGS ...eoveeeeieiee et 307
31.8 Flags specifying which headers and envelope addresses to rewrite 307
31.9 The SMTP-time rewriting flagccooeereeeee e 307
31.10 Flags controlling the rewriting ProCeSSccoevieiririnenieieerereieeeeseseeeee e 308
31.11 Rewriting €XamMPIEScoviiiieieieeee ettt 308
32. Retry configuration ... 310
32.1 Changing retry FUIESc.oooiiieieee ettt 310
32.2 FOrmat Of retry FUIESoeiieiee e 310
32.3 Choosing which retry rule to use for address errorsccoceceveerrerneencereeen, 311
32.4 Choosing which retry rule to use for host and message errorsccoceceveeveenenenn. 311
32.5 Retry rules for SPECIfIC EITOISciiiiiieeee e 312
32.6 Retry rules for specified SENAErScoooioiiieieee e 313
32.7 REtry ParametErscooioiiiiieee e 314
32.8 Retry rule eXamples ... 314
32.9 Timeout Of retry dataccoivieiieiee e 315
32.10 LoNG-term failUrescooieiiieiieeee e 315
32.11 Deliveries that work intermittentlycccooiirioi e 316
33. SMTP authentication ... 317
33.1 Generic options for authentiCators ... 318
33.2 The AUTH parameter on MAIL cOommMandscccceivirenieinineneieneseseeeeeeene 320
33.3 Authentication on an EXim SEIVEr ... 320
33.4 Testing server authentiCationcc.oeveieirininie e 321
33.5 Authentication by an EXim Clent ... 322
34. The plaintext authenticator ... 323
34.1 PlainteXt OPLIONSooueiiieieiieee ettt sttt 323
34.2 USiNg PlainteXt iN @ SEIVET ..ottt 323
34.3 The PLAIN authentication mechaniSm ... 323
34.4 The LOGIN authentication mechanism ... 324
34.5 Support for different kinds of authentication ... 325
34.6 Using plaintext in @ CHENT ..ot 325

35. The cram_md5 authentiCatoroccooiiiiii e 327

35.1 USING Cram_mdS5 @S @ SEIVETcoeiiuiriiieieieeieetetete ettt 327
35.2 Using cram_md5 @S @ CIENTc..coeiiiiieieieeeee e 327
36. The cyrus_sasl authentiCatorc.ocooiiiiii e 329
36.1 USING CYrUS_SASI @S @ SEIVEcuoiuiiiiiiieieieeestetee ettt ettt 329
37. The dovecot authenticator ... 331
38. The gsasl authenticator ..o 332
38.1 gsasl auth VariabIEs ..ot 333
39. The heimdal_gssapi authenticatorcocoooiiiiinie 334
39.1 heimdal_gssapi auth variables ..o 334
40. The spa authentiCatorc.ooiiiii e 335
40.1 USING SPA @S @ SEIVET ...cuiiiiinieiieiietesieteteie ettt ettt sttt st sttt et eb e s b s eseseeenen 335
40.2 USING SPA @S @ CHENT ...ttt 335
41, The tls @UthentiCAtor ... 337
42. Encrypted SMTP connections using TLS/SSLcccococconniiinnnccincccs 338
42.1 Support for the legacy “ssmtp” (aka “smtps”) Protocolccoeeveerineeneieneeenn 338
42.2 OPeNnSSL VS GNUTLS ..ottt 338
42.3 GnuTLS parameter COmMPULALIONcoociiieiiiieiee e 339
42.4 Requiring specific ciphers in OpenSSL ... 340
42.5 Requiring specific ciphers or other parameters in GNUTLSccocooiviiicineenee. 341
42.6 Configuring an Exim server o Use TLS ... 341
42.7 Requesting and verifying client certificates ..o 343
42.8 RevoKed CErtifiCatesooeiririiiieieie e 343
42.9 Configuring an Exim client to use TLS ... 344
42.10 Use of TLS Server Name INdiCationccocooeerireineineieeeecee e 345
42.11 Multiple messages on the same encrypted TCP/IP connectionc.cccoeeunee. 346
42.12 Certificates and all thatccooiii e 347
42.13 Certificate CRAINSc.cueiieieeee e 347
42.14 Self-signed CertifiCates ... 347
43. ACCeSS CONEIOI lISTS ... 349
43.1 TESHNG ACLS ..ottt ettt seae e 349
43.2 Specifying When ACLS @re USEAcccivieuirieiiiieeeeeeeeee e 349
43.3 The NON-SIMTP ACLSooeiieeeee e 350
43.4 The SMTP CONNECE ACL ..ot 350
43.5 The EHLO/HELQO ACL ...ttt 350
43.6 THE DATA ACLS ...ttt 350
43.7 The SMTP DKIM ACL ..ot 351
43.8 The SMTP MIME ACL ...cooiieee ettt 351
43.9 The SMTP PRDR ACL ..ottt 351
43.10 The QUIT ACL ..ottt ne e 351
43.11 The NOt-QUIT ACL ..ottt 352
43.12 FINAING @N ACL 10 USE ...eciiiiiiiieie et 352

4313 ACL FEIUIMN COUEBS ... et e et e e e e e e e e e e e ee e e eeaeeseaaees 353

43.14 UNSEt ACL OPLIONS ..ooociiieiiieieee ettt 353
43.15 Data for mesSage ACLSc.oooiiieieeeee e 354
43.16 Data for NON-MeSSAFE ACLSoiiiiiiieiiieieeee et 354
43.17 FOrmat Of @n ACLooouoiieee e 354
4318 ACL VEIDS ..ottt 355
43.19 ACL VArI@DIES ..ottt 356
43.20 Condition and Modifier ProCESSINGc.eovevirieiririeirieireeeeereeee e 357
43.21 ACL MOIfIEIS ...ttt 358
43.22 Use of the control MOGIfIErccooeiiiiieiee e 362
43.23 Summary of message fiXup CONTIOlcooveuiiriiiiriieeeee e 366
43.24 Adding header iNeS iN ACLSoooiiiiiiieieeeeee e 366
43.25 Removing header liN€S iN ACLSocoiiiiiieieeeeeeeeee e 367
43.26 ACL CONAITIONS ..ottt ettt 368
43.27 USING DINS ISIS ..ottt 372
43.28 Specifying the IP address for a DNS list I0OKUPcoevveieieiniiiciceeceeee 373
43.29 DNS lists keyed 0n dOmMain NAMESccooveiirieirieiieeeeeeieeie et 373
43.30 Multiple explicit keys for @ DNS listcccooieeirieeeeee e 374
43.31 Data returned by DNS SIScooioiiiiieieieeee e 374
43.32 Variables set from DNS lIStSccooeiiieiiieieee e 375
43.33 Additional matching conditions for DNS liStSccccoeiiiiiniiniiccceee 375
43.34 Negated DNS matching conditionscccoeririiieiineieeeeeee e 376
43.35 Handling multiple DNS records from a DNS liStcccooveiieiiieirieceeeeeee 376
43.36 Detailed information from merged DNS liStSccoooveiniiniineieeeee 377
43.37 DNS lists @nd IPVBccooiiiiiiieee e 378
43.38 Rate [imiting iNCOMING MESSAGESceevrueriiriiieieiieierieiee ettt 378
43.39 Ratelimit options for what is being measuredc.cccoeeveineineenneeeee 379
43.40 Ratelimit update MOAEScoviiiiiriieiieeeee e 380
43.41 Ratelimit options for handling fast Clients ... 380
43.42 Limiting the rate of different eVentscoooiiine e 381
43.43 USING rate lIMItING ...ccoooveiiieiee ettt 381
43.44 Address VErfICAtIONciiiiieee e 382
43.45 Callout VErfICAtIONc.oiieiiieiiee e 383
43.46 Additional parameters for Callouts ..o 384
43.47 Callout CACNING ...ooveuiieiiieiiee ettt 386
43.48 Sender address verification reportingcccooeeoeeneineereee e 386
43.49 Redirection While VErIfYINGcccooiiiiieieeee e 387
43.50 Client SMTP authorization (CSA) ..o 387
43.51 Bounce address tag validation ..o 388
43.52 Using an ACL to control relayingcccooeireeneeineeeeeeceee e 389
43.53 Checking a relay configuration ... 390
44. Content scanning at ACL timeccoooiiiiiii s 391
44.1 SCANNING FOF VIFUSESoviieiiieieeee ettt 391
44.2 Scanning with SpamAssassin and RSpamdcccccveireineinneneeseeeseeee 395
44.3 Calling SpamAssassin from an EXim ACLccccooriineineieeeeeeeee e 397
44.4 Scanning MIME PartS ..o 398
44.5 Scanning with regular eXPreSSiONSccciveirireieieieieeeeeeeee e 401
45. Adding a local scan function to EXim ... 402
45.1 Building Exim to use a local scan functionccoccoveineinninnieeeeeee 402
45.2 APLFOr 10CAI_SCAN() wvtveriieiiieieieieteieee ettt 402
45.3 Configuration options for 10Cal_SCaN()ceevveveririeieieieieeeeeeee e 403
45.4 Available EXim variables ... 404
45.5 Structure of header lINESc.oov i e 406
45.6 Structure of reCipient iTEMSooiiiiieee e 406

45.7 Available EXIm fUNCHONSccooiiiiieee e 407
45.8 More about Exim’s memory handlingccoooeieiiinininieeeeeee e 411
46. System-wide message filtering ... 412
46.1 SpecCifying @ SYStem fIErc.oioiiiee e 412
46.2 Testing @ SYStem fIHErc.oieeee e 412
46.3 Contents Of @ SYStem filler ..o 412
46.4 Additional variable for system filters ..o 413
46.5 Defer, freeze, and fail commands for system filters ..., 413
46.6 Adding and removing headers in a system filter ... 414
46.7 Setting an errors address in a system filterc.cocooveiiiiine e 414
46.8 Per-address filteringccoooiieiiee e 415
47. MeSSAJE PrOCESSINGcoouiiiiiiiiiieieiee ettt sttt ettt ettt eb e b sttt ebesaens 416
47.1 Submission mode for non-local MESSAPEScccoeveveireireieeeee e 416
47.2 LiNE ENAINGS ..ooviiiiiiiieieieet ettt b sttt b ettt et b ettt seeenen 417
47.3 UNQUAlified adArESSESciiieiiieieieieeeieieet ettt 417
47.4 The UUCP FrOm lINEc.ooiiiiiieieeeee et 418
47.5 Resent- NEAdEr lINEScooiiiieiee et 418
47.6 The Auto-Submitted: header lINe ... 419
47.7 The BCC: NATEI lINEcouiiiiiieie et 419
47.8 The Date: header lINE ... 419
47.9 The Delivery-date: header lINe ... 419
47.10 The Envelope-10: header liNe ... 419
4711 The From: header lINEcooioiiii s 419
4712 The Message-ID: header liN€ ..o 420
47.13 The Received: Neader liNe ... 420
47.14 The References: header liNeccoooiieiieinieee e 420
47.15 The Return-path: header liNe ..o 420
47.16 The Sender: header liNEcoiiiiieieeeee e 420
47.17 Adding and removing header lines in routers and transportscccoceeeeveeneenne. 421
47.18 CoNnStructed adArESSEScoiieiiirieiieiiie e 422
47.19 Case Of I0CAl PAIScovieuiieiiieieee e 423
47.20 DOtS iN 10CAI PAMTS ...eeeiiiiiiiee e 423
47.21 ReWriting @drESSESc.ooiiiiiiiiieiiieieeeet ettt 423
48. SIMTP PrOCESSINGccoouiieiiieiiieieieteee ettt ettt sttt b et et e st se e senes 424
48.1 Outgoing SMTP and LMTP over TCP/IPccoieeeeeeeeeeeeeee e 424
48.2 Errors in outgoing SIMTP ..o 425
48.3 Incoming SMTP messages over TCP/IP ...t 426
48.4 Unrecognized SMTP COMMANGAScooeiieiiieiiieieeieeeeeeeeee et 428
48.5 Syntax and protocol errors in SMTP commandsccccoeeveineinnenneceeee 428
48.6 Use of non-mail SMTP COMMANGSccooeuiiiiiiieeeeeeeee e 428
48.7 The VRFY and EXPN COMMANAScccooiiiriieiiieeeeee s 428
48.8 The ETRN COMMEANGooiiiiiiiiieeeee ettt 428
48.9 INCOMING 10CAI SMTP ... 429
48.10 Outgoing batched SMTPco o 429
48.11 Incoming batChed SIMTPcooiiee e 430
49. Customizing bounce and warning mesSSagescccocveireireenieeneeeeeeeeenes 431
49.1 Customizing DOUNCE MESSAQEScoveuirieiiieiiieieee e 431
49.2 Customizing Warning MESSAGESccveerirueririeueririeieieseeieeeterereeseseeseee et saesessesesseseneens 432
50. Some common configuration settingscocoooiiiiiii 433

50.1 Sending mail 10 @ SMArt NOSTcooiiiiiieee e 433

50.2 Using Exim to handle mailing lISTScccoeiriiiriieieceee e 433
50.3 Syntax errors in Mailing liStSc.cccovrueiinnieicc s 433
50.4 Re-expansion of Mailing lISTScooiiriiiieee e 434
50.5 Closed MailiNg lSTSc.ooueuiiiiieieeee e 434
50.6 Variable Envelope Return Paths (VERP) ... 435
50.7 Virtual dOMAINSoouiiiiieieireeee ettt sttt sttt nee 436
50.8 Multiple uSer MaIIDOXEScccooiiiiiirieiee et 437
50.9 Simplified vacation ProCEeSSINGccecerveeirieirieireerieee et 438
50.10 Taking copies Of Mallccooueiiiiiee e 438
50.11 Intermittently connected NOSIS ..o 438
50.12 Exim on the upstream Server NOSTccoiviriieieieeeeee e 438
50.13 Exim on the intermittently connected client hoSt ..., 439
51. Using Exim as a non-queueing clientc..ooooiiiiniic e 440
B2, LOG FIlES ...ttt 442
52.1 Where the 10gS are WIItEENcc.ooiiiiirieiee et 442
52.2 Logging to local files that are periodically “cycled”cccomnievinnneccnnneccne. 443
52.3 Datestamped 10Q fileScoiiie e 443
52.4 LOgQING 10 SYSIOQ ..cveviniiiiiiriiieiee et 444
52.5 LOG lINE FIAGS o veuiiiieiee et 445
52.6 LOQQging MESSAJE MECEPLIONoviuiiiiitirieieieieeeetetee ettt 445
52.7 LOGQING AEIVEIIES ..ottt 446
52.8 Discarded dEIIVEIIESc..coviiiriiieieeeee ettt 447
52.9 Deferred deliVEIESociiiiiieeee et 447
52.10 DeliVEry failUreSscoououiiieiieiee e 447
52.11 FaKE EIVEIIESoviiiieiiieee ettt 448
52.12 COMPIELION .ottt 448
52.13 Summary of Fields inN LOg LINESccoeioiiieieeeeeeeee e 448
52.14 OFher 10g €NIIIES ...oououiieiieie ettt 449
52.15 Reducing or increasing what iS 10gged ..o 449
52.16 MESSAGE 100 ..viiiiiieiee ettt bttt ettt 453
53, EXIM UTIITIES ..ottt 455
53.1 Finding out what Exim processes are doing (exiwhat)cccocoovevernineninninnene 455
53.2 Selective queue liSting (EXIAGIEP) «.-vevervrrererreirieirieirieieree ettt 455
53.3 Summarizing the qUEeUE (EXIQSUMIM)ccoiirieirieiieieieeeee ettt 456
53.4 Extracting specific information from the log (eXIgrep)c.cccovereerrernecneeeeen 457
53.5 Selecting messages by various criteria (EXiPICK)ccoeverirerirerieerireireeeeeeee 457
53.6 Cycling 10g files (EXICYCIO) ..cveuiirririeiiirieieieree e 458
53.7 Mall statistiCs (EXIMSTALS)cceveieiiirieiee e 458
53.8 Checking access policy (exim_checkacCess)ccceouveirrerirenieeieereeeeeeeeee 459
53.9 Making DBM files (exim_dbmbuild) ... 459
53.10 Finding individual retry times (EXINEXL)ccvirerieiririnieieieeeieseseeeeee e 460
53.11 Hints database maintenancCe ... 460
53.12 eXIM_AUMPAD ..ottt 461
53,13 eXIM_tIAYAD ..o 461
53,14 @XIM_TIXAD e 462
53.15 Mailbox maintenance (Xim_lOCK)cceoiriririerieininiieieeereee e 462
54. The EXiM MONITOLcoooiiiii et 464
54.1 RunNing the MONITOK ...c..coiiiiiiee ettt 464
54.2 The SIHPCNAITSc.ooiiie ettt 464

54.3 MaiN ACHON DULIONSeeeeeeeeeeeeeeee e e e e e e et e e e e e e e e e e e e e e s reeneeas 465

54.4 THE 10g AISPIAY ...ooveoveriiieieiieeeeee ettt 465
54.5 The QUEUE QISPIAY ...ooueiiuiiiriiitieeet ettt 466
54.6 THE QUEUE MENU ...ouiiiniiiiiiiiieee ettt sttt ettt nae s 466
55. Security considerations ... 469
55.1 Building a more “hardened” EXim ... 469
55.2 ROOT PrIVIIEGE ..ottt ettt 469
55.3 Running EXim Without PriVIlEgecooeriiiiiiieee e 471
55.4 Delivering 10 10Cal fil€Sc.civieiiieiieee e 472
55.5 Running local COMMANGSccooiiiiiriiieieeee et 472
55.6 Trust in configuration dataccooeeiiiiriiree e 472
55.7 IPVA SOUICE FOULING ..ottt sttt sttt 473
55.8 The VRFY, EXPN, and ETRN commands in SMTPcccooviiiiiiioieeeeee 473
55.9 PrIVIIEJEA USEIS ..ottt sttt sttt 473
55.10 SPOOIFIlES ..ttt 473
55.11 USE O @rgV[0] ...cviueieieeeiiee ettt 474
55.12 Use of Y%f FOrmatting ..o 474
55.13 Embedded EXim path ... 474
55.14 Dynamic MOAUIE QIrECIONYcoueiiuiriiieieiireeteteeee ettt 474
55.15 USE Of SPIINLI() .eveuioieiiieiee et 474
55.16 Use of debug_printf() and 10g_Wrte()ccovveireirieieeeeeeeeee e 474
55.17 Use of strcat() and StrCPY() ceeeeveereenieeieeeieeerie et 474
56. Format of SPOOI fIlesccooiiiii e 475
56.1 Format of the -H filecooi e 475
56.2 FOormat Of the -D fil€ ..o 479
57. Support for DKIM (DomainKeys Identified Mail)ccocooiieiiniiniee, 480
57.1 Signing OUtgOING MESSAQFES ...cuevevirieiiieieieietrieeete ettt 480
57.2 Verifying DKIM signatures in incOmMiNg mMaiilc.ccccoevieirieinneneeeeeeeeeee e 481
B8. PrOXIES ...ttt ettt 485
58.1 INDOUNG PrOXIESooviiinieiieiieiieeee ettt bttt 485
58.2 OUIDOUNG PrOXIES ...oviuiieiiieiiieiiiet ettt ettt 485
58.3 LOGGING -ttt b ettt 486
59. InternationaliSation ... 487
59.1 MTA OPEIALIONS ..ottt sttt ettt et be e 487
59.2 MDA OPEIALIONSooviiiieiieiieieet ettt sttt ettt be e 487
B0. EVENTS ...ttt ettt nae 489
61. Adding new drivers or IOOKUP tYPESccooiririiiiiriiicee e 491
OPHONS INAEX ...ttt ettt b et ettt be st ebe e eteneas 492
Variables INAEXco ottt 498
CONCEPT INAGX ...ttt ettt ettt ettt ae st be e eteneas 500

Xiii

1. Introduction

Exim is a mail transfer agent (MTA) for hosts that are running Unix or Unix-like operating systems. It
was designed on the assumption that it would be run on hosts that are permanently connected to the
Internet. However, it can be used on intermittently connected hosts with suitable configuration
adjustments.

Configuration files currently exist for the following operating systems: AIX, BSD/OS (aka BSDI),
Darwin (Mac OS X), DGUX, Dragonfly, FreeBSD, GNU/Hurd, GNU/Linux, HI-OSF (Hitachi), HI-
UX, HP-UX, IRIX, MIPS RISCOS, NetBSD, OpenBSD, OpenUNIX, QNX, SCO, SCO SVR4.2 (aka
UNIX-SV), Solaris (aka SunOS5), SunOS4, Tru64-Unix (formerly Digital UNIX, formerly DEC-
OSF1), Ultrix, and Unixware. Some of these operating systems are no longer current and cannot
easily be tested, so the configuration files may no longer work in practice.

There are also configuration files for compiling Exim in the Cygwin environment that can be installed
on systems running Windows. However, this document does not contain any information about run-
ning Exim in the Cygwin environment.

The terms and conditions for the use and distribution of Exim are contained in the file NOTICE. Exim
is distributed under the terms of the GNU General Public Licence, a copy of which may be found in
the file LICENCE.

The use, supply or promotion of Exim for the purpose of sending bulk, unsolicited electronic mail is
incompatible with the basic aims of the program, which revolve around the free provision of a service
that enhances the quality of personal communications. The author of Exim regards indiscriminate
mass-mailing as an antisocial, irresponsible abuse of the Internet.

Exim owes a great deal to Smail 3 and its author, Ron Karr. Without the experience of running and
working on the Smail 3 code, I could never have contemplated starting to write a new MTA. Many of
the ideas and user interfaces were originally taken from Smail 3, though the actual code of Exim is
entirely new, and has developed far beyond the initial concept.

Many people, both in Cambridge and around the world, have contributed to the development and the
testing of Exim, and to porting it to various operating systems. I am grateful to them all. The
distribution now contains a file called ACKNOWLEDGMENTS, in which I have started recording the
names of contributors.

1.1 Exim documentation

This edition of the Exim specification applies to version 4.90 of Exim. Substantive changes from the
4.89 edition are marked in some renditions of the document; this paragraph is so marked if the
rendition is capable of showing a change indicator.

This document is very much a reference manual; it is not a tutorial. The reader is expected to have
some familiarity with the SMTP mail transfer protocol and with general Unix system administration.
Although there are some discussions and examples in places, the information is mostly organized in a
way that makes it easy to look up, rather than in a natural order for sequential reading. Furthermore,
the manual aims to cover every aspect of Exim in detail, including a number of rarely-used, special-
purpose features that are unlikely to be of very wide interest.

An “easier” discussion of Exim which provides more in-depth explanatory, introductory, and tutorial
material can be found in a book entitled The Exim SMTP Mail Server (second edition, 2007), pub-
lished by UIT Cambridge (http://www.uit.co.uk/exim-book/).

This book also contains a chapter that gives a general introduction to SMTP and Internet mail.
Inevitably, however, the book is unlikely to be fully up-to-date with the latest release of Exim. (Note
that the earlier book about Exim, published by O’Reilly, covers Exim 3, and many things have
changed in Exim 4.)

If you are using a Debian distribution of Exim, you will find information about Debian-specific
features in the file /usr/share/doc/exim4-base/README.Debian. The command man update-exim.conf
is another source of Debian-specific information.

1 Introduction (1)

As the program develops, there may be features in newer versions that have not yet made it into this
document, which is updated only when the most significant digit of the fractional part of the version
number changes. Specifications of new features that are not yet in this manual are placed in the file
doc/NewStuff in the Exim distribution.

Some features may be classified as “experimental”. These may change incompatibly while they are
developing, or even be withdrawn. For this reason, they are not documented in this manual.
Information about experimental features can be found in the file doc/experimental.txt.

All changes to the program (whether new features, bug fixes, or other kinds of change) are noted
briefly in the file called doc/ChangeLog.

This specification itself is available as an ASCII file in doc/spec.txt so that it can easily be searched
with a text editor. Other files in the doc directory are:

OptionLists.txt list of all options in alphabetical order
dbm.discuss.txt discussion about DBM libraries

exim.8 a man page of Exim’s command line options
experimental.txt documentation of experimental features
filter.txt specification of the filter language
Exim3.upgrade upgrade notes from release 2 to release 3
Exim4.upgrade upgrade notes from release 3 to release 4
openssl.txt installing a current OpenSSL release

The main specification and the specification of the filtering language are also available in other
formats (HTML, PostScript, PDF, and Texinfo). Sectionbelow tells you how to get hold of these.

1.2 FTP and web sites

The primary site for Exim source distributions is currently the University of Cambridge’s FTP site,
whose contents are described in Where to find the Exim distribution below. In addition, there is a web
site and an FTP site at exim.org. These are now also hosted at the University of Cambridge. The
exim.org site was previously hosted for a number of years by Energis Squared, formerly Planet
Online Ltd, whose support I gratefully acknowledge.

As well as Exim distribution tar files, the Exim web site contains a number of differently formatted
versions of the documentation. A recent addition to the online information is the Exim wiki
(http://wiki.exim.org), which contains what used to be a separate FAQ, as well as various other
examples, tips, and know-how that have been contributed by Exim users.

An Exim Bugzilla exists at https://bugs.exim.org. You can use this to report bugs, and also to add
items to the wish list. Please search first to check that you are not duplicating a previous entry.

1.3 Mailing lists

The following Exim mailing lists exist:

exim-announce @ exim.org Moderated, low volume announcements list
exim-users @exim.org General discussion list

exim-dev @ exim.org Discussion of bugs, enhancements, etc.
exim-cvs @exim.org Automated commit messages from the VCS

You can subscribe to these lists, change your existing subscriptions, and view or search the archives
via the mailing lists link on the Exim home page. If you are using a Debian distribution of Exim, you
may wish to subscribe to the Debian-specific mailing list pkg-exim4-users @lists.alioth.debian.org via
this web page:

http://lists.alioth.debian.org/mailman/listinfo/pkg-exim4-users

Please ask Debian-specific questions on this list and not on the general Exim lists.

2 Introduction (1)

1.4 Bug reports

Reports of obvious bugs can be emailed to bugs@exim.org or reported via the Bugzilla
(https://bugs.exim.org). However, if you are unsure whether some behaviour is a bug or not, the best
thing to do is to post a message to the exim-dev mailing list and have it discussed.

1.5 Where to find the Exim distribution
The master ftp site for the Exim distribution is
ftp://ftp.exim.org/pub/exim

The file references that follow are relative to the exim directories at these sites. There are now quite a
number of independent mirror sites around the world. Those that I know about are listed in the file
called Mirrors.

Within the exim directory there are subdirectories called exim3 (for previous Exim 3 distributions),
exim4 (for the latest Exim 4 distributions), and 7esting for testing versions. In the exim4 subdirectory,
the current release can always be found in files called

exim-n.nn.tar.gz
exim-n.nn.tar.bz2

where n.nn is the highest such version number in the directory. The two files contain identical data;
the only difference is the type of compression. The .bz2 file is usually a lot smaller than the . gz file.

The distributions will be PGP signed by an individual key of the Release Coordinator. This key will
have a uid containing an email address in the exim.org domain and will have signatures from other
people, including other Exim maintainers. We expect that the key will be in the "strong set" of PGP
keys. There should be a trust path to that key from Nigel Metheringham’s PGP key, a version of
which can be found in the release directory in the file nigel-pubkey.asc. All keys used will be available
in public keyserver pools, such as pool.sks-keyservers.net.

At time of last update, releases were being made by Phil Pennock and signed with key
0x403043153903637F, although that key is expected to be replaced in 2013. A trust path from Nigel’s
key to Phil’s can be observed at https://www.security.spodhuis.org/exim-trustpath.

Releases have also been authorized to be performed by Todd Lyons who signs with key
OxC4F4F94804D29EBA. A direct trust path exists between previous RE Phil Pennock and Todd
Lyons through a common associate.

The signatures for the tar bundles are in:

exim-n.nn.tar.gz.asc
exim-n.nn.tar.bz2.asc

For each released version, the log of changes is made separately available in a separate file in the
directory ChangelLogs so that it is possible to find out what has changed without having to download
the entire distribution.

The main distribution contains ASCII versions of this specification and other documentation; other
formats of the documents are available in separate files inside the exim4 directory of the FTP site:

exim-html-n.nn.tar.gz
exim-pdf-n.nn.tar.gz
exim-postscript-n.nn.tar.gz
exim-texinfo-n.nn.tar.gz

These tar files contain only the doc directory, not the complete distribution, and are also available in
.bz2 as well as .gz forms.

1.6 Limitations

* Exim is designed for use as an Internet MTA, and therefore handles addresses in RFC 2822 domain
format only. It cannot handle UUCP “bang paths”, though simple two-component bang paths can

3 Introduction (1)

be converted by a straightforward rewriting configuration. This restriction does not prevent Exim
from being interfaced to UUCP as a transport mechanism, provided that domain addresses are
used.

» Exim insists that every address it handles has a domain attached. For incoming local messages,
domainless addresses are automatically qualified with a configured domain value. Configuration
options specify from which remote systems unqualified addresses are acceptable. These are then
qualified on arrival.

* The only external transport mechanisms that are currently implemented are SMTP and LMTP over
a TCP/IP network (including support for IPv6). However, a pipe transport is available, and there
are facilities for writing messages to files and pipes, optionally in batched SMTP format; these
facilities can be used to send messages to other transport mechanisms such as UUCP, provided they
can handle domain-style addresses. Batched SMTP input is also catered for.

* Exim is not designed for storing mail for dial-in hosts. When the volumes of such mail are large, it
is better to get the messages “delivered” into files (that is, off Exim’s queue) and subsequently
passed on to the dial-in hosts by other means.

* Although Exim does have basic facilities for scanning incoming messages, these are not compre-
hensive enough to do full virus or spam scanning. Such operations are best carried out using
additional specialized software packages. If you compile Exim with the content-scanning exten-
sion, straightforward interfaces to a number of common scanners are provided.

1.7 Run time configuration

Exim’s run time configuration is held in a single text file that is divided into a number of sections. The
entries in this file consist of keywords and values, in the style of Smail 3 configuration files. A default
configuration file which is suitable for simple online installations is provided in the distribution, and
is described in chapterbelow.

1.8 Calling interface

Like many MTAs, Exim has adopted the Sendmail command line interface so that it can be a straight
replacement for /usr/lib/sendmail or /usr/sbin/sendmail when sending mail, but you do not need to
know anything about Sendmail in order to run Exim. For actions other than sending messages,
Sendmail-compatible options also exist, but those that produce output (for example, -bp, which lists
the messages on the queue) do so in Exim’s own format. There are also some additional options that
are compatible with Smail 3, and some further options that are new to Exim. Chapterdocuments all
Exim’s command line options. This information is automatically made into the man page that forms
part of the Exim distribution.

Control of messages on the queue can be done via certain privileged command line options. There is
also an optional monitor program called eximon, which displays current information in an X window,
and which contains a menu interface to Exim’s command line administration options.

1.9 Terminology

The body of a message is the actual data that the sender wants to transmit. It is the last part of a
message, and is separated from the header (see below) by a blank line.

When a message cannot be delivered, it is normally returned to the sender in a delivery failure
message or a “non-delivery report” (NDR). The term bounce is commonly used for this action, and
the error reports are often called bounce messages. This is a convenient shorthand for “delivery failure
error report”. Such messages have an empty sender address in the message’s envelope (see below) to
ensure that they cannot themselves give rise to further bounce messages.

The term default appears frequently in this manual. It is used to qualify a value which is used in the
absence of any setting in the configuration. It may also qualify an action which is taken unless a
configuration setting specifies otherwise.

4 Introduction (1)

The term defer is used when the delivery of a message to a specific destination cannot immediately
take place for some reason (a remote host may be down, or a user’s local mailbox may be full). Such
deliveries are deferred until a later time.

The word domain is sometimes used to mean all but the first component of a host’s name. It is not
used in that sense here, where it normally refers to the part of an email address following the @ sign.

A message in transit has an associated envelope, as well as a header and a body. The envelope
contains a sender address (to which bounce messages should be delivered), and any number of
recipient addresses. References to the sender or the recipients of a message usually mean the
addresses in the envelope. An MTA uses these addresses for delivery, and for returning bounce
messages, not the addresses that appear in the header lines.

The header of a message is the first part of a message’s text, consisting of a number of lines, each of
which has a name such as From:, To:, Subject:, etc. Long header lines can be split over several text
lines by indenting the continuations. The header is separated from the body by a blank line.

The term local part, which is taken from RFC 2822, is used to refer to that part of an email address
that precedes the @ sign. The part that follows the @ sign is called the domain or mail domain.

The terms local delivery and remote delivery are used to distinguish delivery to a file or a pipe on the
local host from delivery by SMTP over TCP/IP to another host. As far as Exim is concerned, all hosts
other than the host it is running on are remote.

Return path is another name that is used for the sender address in a message’s envelope.

The term queue is used to refer to the set of messages awaiting delivery, because this term is in
widespread use in the context of MTAs. However, in Exim’s case the reality is more like a pool than a
queue, because there is normally no ordering of waiting messages.

The term queue runner is used to describe a process that scans the queue and attempts to deliver those
messages whose retry times have come. This term is used by other MTAs, and also relates to the
command rungq, but in Exim the waiting messages are normally processed in an unpredictable order.

The term spool directory is used for a directory in which Exim keeps the messages on its queue — that
is, those that it is in the process of delivering. This should not be confused with the directory in which
local mailboxes are stored, which is called a “spool directory” by some people. In the Exim documen-
tation, “spool” is always used in the first sense.

5 Introduction (1)

2. Incorporated code

A number of pieces of external code are included in the Exim distribution.

* Regular expressions are supported in the main Exim program and in the Exim monitor using the
freely-distributable PCRE library, copyright © University of Cambridge. The source to PCRE is no
longer shipped with Exim, so you will need to use the version of PCRE shipped with your system,
or obtain and install the full version of the library from
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre.

* Support for the cdb (Constant DataBase) lookup method is provided by code contributed by Nigel
Metheringham of (at the time he contributed it) Planet Online Ltd. The implementation is com-
pletely contained within the code of Exim. It does not link against an external cdb library. The code
contains the following statements:

Copyright © 1998 Nigel Metheringham, Planet Online Ltd

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version. This code implements
Dan Bernstein’s Constant DataBase (cdb) spec. Information, the spec and sample code
for cdb can be obtained from http://www.pobox.com/~djb/cdb.html. This implemen-
tation borrows some code from Dan Bernstein’s implementation (which has no license
restrictions applied to it).

* Client support for Microsoft’s Secure Password Authentication is provided by code contributed by
Marc Prud’hommeaux. Server support was contributed by Tom Kistner. This includes code taken
from the Samba project, which is released under the Gnu GPL.

* Support for calling the Cyrus pwcheck and saslauthd daemons is provided by code taken from the
Cyrus-SASL library and adapted by Alexander S. Sabourenkov. The permission notice appears
below, in accordance with the conditions expressed therein.

Copyright © 2001 Carnegie Mellon University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

(3) The name “Carnegie Mellon University” must not be used to endorse or promote
products derived from this software without prior written permission. For per-
mission or any other legal details, please contact

Office of Technology Transfer
Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3890

(412) 268-4387, fax: (412) 268-7395
tech-transfer @andrew.cmu.edu

(4) Redistributions of any form whatsoever must retain the following
acknowledgment:

“This product includes software developed by Computing Services at Carnegie
Mellon University (http://www.cmu.edu/computing/.”

CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES

6 Incorporated code (2)

OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL CARNEGIE
MELLON UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

* The Exim Monitor program, which is an X-Window application, includes modified versions of the
Athena StripChart and TextPop widgets. This code is copyright by DEC and MIT, and their
permission notice appears below, in accordance with the conditions expressed therein.

Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and
the Massachusetts Institute of Technology, Cambridge, Massachusetts.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
appear in all copies and that both that copyright notice and this permission notice appear
in supporting documentation, and that the names of Digital or MIT not be used in
advertising or publicity pertaining to distribution of the software without specific, writ-
ten prior permission.

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOFTWARE.

* The DMARC implementation uses the OpenDMARC library which is Copyrighted by The Trusted
Domain Project. Portions of Exim source which use OpenDMARC derived code are indicated in
the respective source files. The full OpenDMARC license is provided in the LICENSE.opendmarc
file contained in the distributed source code.

* Many people have contributed code fragments, some large, some small, that were not covered by

any specific licence requirements. It is assumed that the contributors are happy to see their code
incorporated into Exim under the GPL.

7 Incorporated code (2)

3. How Exim receives and delivers mail

3.1 Overall philosophy

Exim is designed to work efficiently on systems that are permanently connected to the Internet and
are handling a general mix of mail. In such circumstances, most messages can be delivered immedi-
ately. Consequently, Exim does not maintain independent queues of messages for specific domains or
hosts, though it does try to send several messages in a single SMTP connection after a host has been
down, and it also maintains per-host retry information.

3.2 Policy control

Policy controls are now an important feature of MTAs that are connected to the Internet. Perhaps their
most important job is to stop MTAs being abused as “open relays” by misguided individuals who
send out vast amounts of unsolicited junk, and want to disguise its source. Exim provides flexible
facilities for specifying policy controls on incoming mail:

* Exim 4 (unlike previous versions of Exim) implements policy controls on incoming mail by means
of Access Control Lists (ACLs). Each list is a series of statements that may either grant or deny
access. ACLs can be used at several places in the SMTP dialogue while receiving a message from a
remote host. However, the most common places are after each RCPT command, and at the very
end of the message. The sysadmin can specify conditions for accepting or_rejecting individual
recipients or the entire message, respectively, at these two points (see chapter . Denial of access
results in an SMTP error code.

* An ACL is also available for locally generated, non-SMTP messages. In this case, the only avail-
able actions are to accept or deny the entire message.

* When Exim is compiled with the content-scanning extension, facilities are provided in the ACL
mechanism for passing the message to external virus and/or spam scanning software. The result of
such a scan is passed back to the ACL, which can then use it to decide what to do with the
message.

* When a message has been received, either from a remote host or from the local host, but before the
final acknowledgment has been sent, a locally supplied C function called local scan() can be run to
inspect the message and decide whether to accept it or not (see chapter . If the message is
accepted, the list of recipients can be modified by the function.

* Using the local_scan() mechanism is another way of calling external scanner software. The SA-
Exim add-on package works this way. It does not require Exim to be compiled with the content-
scanning extension.

» After a message has been accepted, a further checking mechanism is available in the form of the
system filter (see chapter @) This runs at the start of every delivery process.

3.3 User filters

In a conventional Exim configuration, users are able to run private filters by setting up appropriate
Jorward files in their home directories. See chapter (about the redirect router) for the configuration
needed to support this, and the separate document entitled Exim’s interfaces to mail filtering for user
details. Two different kinds of filtering are available:

» Sieve filters are written in the standard filtering language that is defined by RFC 3028.

» Exim filters are written in a syntax that is unique to Exim, but which is more powerful than Sieve,
which it pre-dates.

User filters are run as part of the routing process, described below.

8 Receiving and delivering mail (3)

3.4 Message identification

Every message handled by Exim is given a message id which is sixteen characters long. It is divided
into three parts, separated by hyphens, for example 16VDhn-0001bo-D3. Each part is a sequence
of letters and digits, normally encoding numbers in base 62. However, in the Darwin operating system
(Mac OS X) and when Exim is compiled to run under Cygwin, base 36 (avoiding the use of lower
case letters) is used instead, because the message id is used to construct file names, and the names of
files in those systems are not always case-sensitive.

The detail of the contents of the message id have changed as Exim has evolved. Earlier versions relied
on the operating system not re-using a process id (pid) within one second. On modern operating
systems, this assumption can no longer be made, so the algorithm had to be changed. To retain
backward compatibility, the format of the message id was retained, which is why the following rules
are somewhat eccentric:

* The first six characters of the message id are the time at which the message started to be received,
to a granularity of one second. That is, this field contains the number of seconds since the start of
the epoch (the normal Unix way of representing the date and time of day).

» After the first hyphen, the next six characters are the id of the process that received the message.
* There are two different possibilities for the final two characters:

(1) If localhost_number is not set, this value is the fractional part of the time of reception,
normally in units of 1/2000 of a second, but for systems that must use base 36 instead of base
62 (because of case-insensitive file systems), the units are 1/1000 of a second.

(2) If localhost_number is set, it is multiplied by 200 (100) and added to the fractional part of
the time, which in this case is in units of 1/200 (1/100) of a second.

After a message has been received, Exim waits for the clock to tick at the appropriate resolution
before proceeding, so that if another message is received by the same process, or by another process
with the same (re-used) pid, it is guaranteed that the time will be different. In most cases, the clock
will already have ticked while the message was being received.

3.5 Receiving mail

The only way Exim can receive mail from another host is using SMTP over TCP/IP, in which case the
sender and recipient addresses are transferred using SMTP commands. However, from a locally
running process (such as a user’s MUA), there are several possibilities:

 If the process runs Exim with the -bm option, the message is read non-interactively (usually via a
pipe), with the recipients taken from the command line, or from the body of the message if -t is
also used.

 If the process runs Exim with the -bS option, the message is also read non-interactively, but in this
case the recipients are listed at the start of the message in a series of SMTP RCPT commands,
terminated by a DATA command. This is so-called “batch SMTP” format, but it isn’t really SMTP.
The SMTP commands are just another way of passing envelope addresses in a non-interactive
submission.

» If the process runs Exim with the -bs option, the message is read interactively, using the SMTP
protocol. A two-way pipe is normally used for passing data between the local process and the Exim
process. This is “real” SMTP and is handled in the same way as SMTP over TCP/IP. For example,
the ACLs for SMTP commands are used for this form of submission.

* A local process may also make a TCP/IP call to the host’s loopback address (127.0.0.1) or any
other of its IP addresses. When receiving messages, Exim does not treat the loopback address
specially. It treats all such connections in the same way as connections from other hosts.

In the three cases that do not involve TCP/IP, the sender address is constructed from the login name of
the user that called Exim and a default qualification domain (which can be set by the qualify_domain
configuration option). For local or batch SMTP, a sender address that is passed using the SMTP
MAIL command is ignored. However, the system administrator may allow certain users (“trusted

9 Receiving and delivering mail (3)

users”) to specify a different sender address unconditionally, or all users to specify certain forms of
different sender address. The -f option or the SMTP MAIL command is used to specify these different
addresses. See section for details of trusted users, and the untrusted_set_sender option for a way
of allowing untrusted users to change sender addresses.

Messages received by either of the non-interactive mechanisms are subject to checking by the non-
SMTP ACL, if one is defined. Messages received using SMTP (either over TCP/IP, or interacting with
a local process) can be checked by a number of ACLs that operate at different times during the SMTP
session. Either individual recipients, or the entire message. can be rejected if local policy require-
ments are not met. The local_scan() function (see chapter@) is run for all incoming messages.

Exim can be configured not to start a delivery process when a message is received; this can be
unconditional, or depend on the number of incoming SMTP connections or the system load. In these
situations, new messages wait on the queue until a queue runner process picks them up. However, in
standard configurations under normal conditions, delivery is started as soon as a message is received.

3.6 Handling an incoming message

When Exim accepts a message, it writes two files in its spool directory. The first contains the envelope
information, the current status of the message, and the header lines, and the second contains the body
of the message. The names of the two spool files consist of the message id, followed by —H for the file
containing the envelope and header, and D for the data file.

By default all these message files are held in a single directory called input inside the general Exim
spool directory. Some operating systems do not perform very well if the number of files in a directory
gets large; to improve performance in such cases, the split_spool_directory option can be used. This
causes Exim to split up the input files into 62 sub-directories whose names are single letters or digits.
When this is done, the queue is processed one sub-directory at a time instead of all at once, which can
improve overall performance even when there are not enough files in each directory to affect file
system performance.

The envelope information consists of the address of the message’s sender and the addresses of the
recipients. This information is entirely separate from any addresses contained in the header lines. The
status of the message includes a list of recipients who have already received the message. The format
of the first spool file is described in Chapter]EI

Address rewriting that is specified in the rewrite section of the configuration (see chapter is done
once and for all on incoming addresses, both in the header lines and the envelope, at the time the
message is accepted. If during the course of delivery additional addresses are generated (for example,
via aliasing), these new addresses are rewritten as soon as they are generated. At the time a message is
actually delivered (transported) further rewriting can take place; because this is a transport option, it
can be different for different forms of delivery. It is also possible to specify the addition or removal of
certain header lines at the time the message is delivered (see chapters and .

3.7 Life of a message

A message remains in the spool directory until it is completely delivered to its recipients or to an error
address, or until it is deleted by an administrator or by the user who originally created it. In cases
when delivery cannot proceed — for example, when a message can neither be delivered to its recipi-
ents nor returned to its sender, the message is marked “frozen” on the spool, and no more deliveries
are attempted.

>

An administrator can “thaw” such messages when the problem has been corrected, and can also
freeze individual messages by hand if necessary. In addition, an administrator can force a delivery
error, causing a bounce message to be sent.

There are options called ignore_bounce_errors_after and timeout_frozen_after, which discard
frozen messages after a certain time. The first applies only to frozen bounces, the second to any
frozen messages.

While Exim is working on a message, it writes information about each delivery attempt to its main
log file. This includes successful, unsuccessful, and delayed deliveries for each recipient (see chapter

10 Receiving and delivering mail (3)

52). The log lines are also written to a separate message log file for each message. These logs are
solely for the benefit of the administrator, and are normally deleted along with the spool files when
processing of a message is complete. The use of individual message logs can be disabled by setting
no_message_logs; this might give an improvement in performance on very busy systems.

All the information Exim itself needs to set up a delivery is kept in the first spool file, along with the
header lines. When a successful delivery occurs, the address is immediately written at the end of a
journal file, whose name is the message id followed by —J. At the end of a delivery run, if there are
some addresses left to be tried again later, the first spool file (the —H file) is updated to indicate which
these are, and the journal file is then deleted. Updating the spool file is done by writing a new file and
renaming it, to minimize the possibility of data loss.

Should the system or the program crash after a successful delivery but before the spool file has been
updated, the journal is left lying around. The next time Exim attempts to deliver the message, it reads
the journal file and updates the spool file before proceeding. This minimizes the chances of double
deliveries caused by crashes.

3.8 Processing an address for delivery

The main delivery processing elements of Exim are called routers and transports, and collectively
these are known as drivers. Code for a number of them is provided in the source distribution, and
compile-time options specify which ones are included in the binary. Run time options specify which
ones are actually used for delivering messages.

Each driver that is specified in the run time configuration is an instance of that particular driver type.
Multiple instances are allowed; for example, you can set up several different smip transports, each
with different option values that might specify different ports or different timeouts. Each instance has
its own identifying name. In what follows we will normally use the instance name when discussing
one particular instance (that is, one specific configuration of the driver), and the generic driver name
when discussing the driver’s features in general.

A router is a driver that operates on an address, either determining how its delivery should happen, by
assigning it to a specific transport, or converting the address into one or more new addresses (for
example, via an alias file). A router may also explicitly choose to fail an address, causing it to be
bounced.

A transport is a driver that transmits a copy of the message from Exim’s spool to some destination.
There are two kinds of transport: for a local transport, the destination is a file or a pipe on the local
host, whereas for a remote transport the destination is some other host. A message is passed to a
specific transport as a result of successful routing. If a message has several recipients, it may be
passed to a number of different transports.

An address is processed by passing it to each configured router instance in turn, subject to certain
preconditions, until a router accepts the address or specifies that it should be bounced. We will
describe this process in more detail shortly. First, as a simple example, we consider how each recipi-
ent address in a message is processed in a small configuration of three routers.

To make this a more concrete example, it is described in terms of some actual routers, but remember,
this is only an example. You can configure Exim’s routers in many different ways, and there may be
any number of routers in a configuration.

The first router that is specified in a configuration is often one that handles addresses in domains that
are not recognized specially by the local host. These are typically addresses for arbitrary domains on
the Internet. A precondition is set up which looks for the special domains known to the host (for
example, its own domain name), and the router is run for addresses that do not match. Typically, this
is a router that looks up domains in the DNS in order to find the hosts to which this address routes. If
it succeeds, the address is assigned to a suitable SMTP transport; if it does not succeed, the router is
configured to fail the address.

The second router is reached only when the domain is recognized as one that “belongs” to the local
host. This router does redirection — also known as aliasing and forwarding. When it generates one or
more new addresses from the original, each of them is routed independently from the start. Otherwise,

11 Receiving and delivering mail (3)

the router may cause an address to fail, or it may simply decline to handle the address, in which case
the address is passed to the next router.

The final router in many configurations is one that checks to see if the address belongs to a local
mailbox. The precondition may involve a check to see if the local part is the name of a login account,
or it may look up the local part in a file or a database. If its preconditions are not met, or if the router
declines, we have reached the end of the routers. When this happens, the address is bounced.

3.9 Processing an address for verification

As well as being used to decide how to deliver to an address, Exim’s routers are also used for address
verification. Verification can be requested as one of the checks to be performed in an ACL for
incoming messages, on both sender and recipient addresses, and it can be tested using the -bv and
-bvs command line options.

When an address is being verified, the routers are run in “verify mode”. This does not affect the way
the routers work, but it is a state that can be detected. By this means, a router can be skipped or made
to behave differently when verifying. A common example is a configuration in which the first router
sends all messages to a message-scanning program, unless they have been previously scanned. Thus,
the first router accepts all addresses without any checking, making it useless for verifying. Normally,
the no_verify option would be set for such a router, causing it to be skipped in verify mode.

3.10 Running an individual router

As explained in the example above, a number of preconditions are checked before running a router. If
any are not met, the router is skipped, and the address is passed to the next router. When all the
preconditions on a router are met, the router is run. What happens next depends on the outcome,
which is one of the following:

* accept: The router accepts the address, and either assigns it to a transport, or generates one or more
“child” addresses. Processing the original address ceases, unless the unseen option is set on the
router. This option can be used to set up multiple deliveries with different routing (for example, for
keeping archive copies of messages). When unseen is set, the address is passed to the next router.
Normally, however, an accept return marks the end of routing.

Any child addresses generated by the router are processed independently, starting with the first
router by default. It is possible to change this by setting the redirect_router option to specify
which router to start at for child addresses. Unlike pass_router (see below) the router specified by
redirect_router may be anywhere in the router configuration.

* pass: The router recognizes the address, but cannot handle it itself. It requests that the address be
passed to another router. By default the address is passed to the next router, but this can be changed
by setting the pass_router option. However, (unlike redirect_router) the named router must be
below the current router (to avoid loops).

* decline: The router declines to accept the address because it does not recognize it at all. By default,
the address is passed to the next router, but this can be prevented by setting the no_more option.
When no_more is set, all the remaining routers are skipped. In effect, no_more converts decline
into fail.

* fail: The router determines that the address should fail, and queues it for the generation of a bounce
message. There is no further processing of the original address unless unseen is set on the router.

* defer: The router cannot handle the address at the present time. (A database may be offline, or a
DNS lookup may have timed out.) No further processing of the address happens in this delivery
attempt. It is tried again next time the message is considered for delivery.

» error: There is some error in the router (for example, a syntax error in its configuration). The action
is as for defer.

If an address reaches the end of the routers without having been accepted by any of them, it is
bounced as unrouteable. The default error message in this situation is “unrouteable address”, but you

12 Receiving and delivering mail (3)

can set your own message by making use of the cannot_route_message option. This can be set for
any router; the value from the last router that “saw” the address is used.

Sometimes while routing you want to fail a delivery when some conditions are met but others are not,
instead of passing the address on for further routing. You can do this by having a second router that
explicitly fails the delivery when the relevant conditions are met. The redirect router has a “fail”
facility for this purpose.

3.11 Duplicate addresses

Once routing is complete, Exim scans the addresses that are assigned to local and remote transports,
and discards any duplicates that it finds. During this check, local parts are treated as case-sensitive.
This happens only when actually delivering a message; when testing routers with -bt, all the routed
addresses are shown.

3.12 Router preconditions

The preconditions that are tested for each router are listed below, in the order in which they are tested.
The individual configuration options are described in more detail in chapter

* The local_part_prefix and local_part_suffix options can specify that the local parts handled by
the router may or must have certain prefixes and/or suffixes. If a mandatory affix (prefix or suffix)
is not present, the router is skipped. These conditions are tested first. When an affix is present, it
is removed from the local part before further processing, including the evaluation of any other
conditions.

* Routers can be designated for use only when not verifying an address, that is, only when routing it
for delivery (or testing its delivery routing). If the verify option is set false, the router is skipped
when Exim is verifying an address. Setting the verify option actually sets two options, verify_
sender and verify_recipient, which independently control the use of the router for sender and
recipient verification. You can set these options directly if you want a router to be used for only one
type of verification. Note that cutthrough delivery is classed as a recipient verification for this
purpose.

» If the address_test option is set false, the router is skipped when Exim is run with the -bt option to
test an address routing. This can be helpful when the first router sends all new messages to a
scanner of some sort; it makes it possible to use -bt to test subsequent delivery routing without
having to simulate the effect of the scanner.

* Routers can be designated for use only when verifying an address, as opposed to routing it for
delivery. The verify_only option controls this. Again, cutthrough delivery counts as a verification.

* Individual routers can be explicitly skipped when running the routers to check an address given in
the SMTP EXPN command (see the expn option).

* If the domains option is set, the domain of the address must be in the set of domains that it defines.

* If the local_parts option is set, the local part of the address must be in the set of local parts that it
defines. If local_part_prefix or local_part_suffix is in use, the prefix or suffix is removed from the
local part before this check. If you want to do precondition tests on local parts that include affixes,
you can do so by using a condition option (see below) that uses the variables $local_part, $local_
part_prefix, and $local_part_suffix as necessary.

» If the check_local_user option is set, the local part must be the name of an account on the local
host. If this check succeeds, the uid and gid of the local user are placed in $local_user_uid and
8local_user_gid and the user’s home directory is placed in $home; these values can be used in the
remaining preconditions.

» If the router_home_directory option is set, it is expanded at this point, because it overrides the
value of $home. If this expansion were left till later, the value of $home as set by check_local_user
would be used in subsequent tests. Having two different values of $home in the same router could
lead to confusion.

13 Receiving and delivering mail (3)

If the senders option is set, the envelope sender address must be in the set of addresses that it
defines.

If the require_files option is set, the existence or non-existence of specified files is tested.

If the condition option is set, it is evaluated and tested. This option uses an expanded string to
allow you to set up your own custom preconditions. Expanded strings are described in chapter

Note that require_files comes near the end of the list, so you cannot use it to check for the existence
of a file in which to lookup up a domain, local part, or sender. However, as these options are all
expanded, you can use the exists expansion condition to make such tests within each condition. The
require_files option is intended for checking files that the router may be going to use internally, or
which are needed by a specific transport (for example, .procmailrc).

3.13 Delivery in detail

When a message is to be delivered, the sequence of events is as follows:

If a system-wide filter file is specified, the message is passed to it. The filter may add recipients to
the message, replace the recipients, discard the message, cause a new message to be generated, or
cause the message delivery to fail. The format of the system filter file is the same as for Exim user
filter files, described in the separate document entitled Exim’s interfaces to mail filtering. (Note:
Sieve cannot be used for system filter files.)

Some additional features are available in system filters — see chapter @ for details. Note that a
message is passed to the system filter only once per delivery attempt, however many recipients it
has. However, if there are several delivery attempts because one or more addresses could not be
immediately delivered, the system filter is run each time. The filter condition first_delivery can be
used to detect the first run of the system filter.

Each recipient address is offered to each configured router in turn, subject to its preconditions, until
one is able to handle it. If no router can handle the address, that is, if they all decline, the address is
failed. Because routers can be targeted at particular domains, several locally handled domains can
be processed entirely independently of each other.

A router that accepts an address may assign it to a local or a remote transport. However, the
transport is not run at this time. Instead, the address is placed on a list for the particular transport,
which will be run later. Alternatively, the router may generate one or more new addresses (typically
from alias, forward, or filter files). New addresses are fed back into this process from the top, but in
order to avoid loops, a router ignores any address which has an identically-named ancestor that was
processed by itself.

When all the routing has been done, addresses that have been successfully handled are passed to
their assigned transports. When local transports are doing real local deliveries, they handle only
one address at a time, but if a local transport is being used as a pseudo-remote transport (for
example, to collect batched SMTP messages for transmission by some other means) multiple
addresses can be handled. Remote transports can always handle more than one address at a time,
but can be configured not to do so, or to restrict multiple addresses to the same domain.

Each local delivery to a file or a pipe runs in a separate process under a non-privileged uid, and
these deliveries are run one at a time. Remote deliveries also run in separate processes, normally
under a uid that is private to Exim (“the Exim user”), but in this case, several remote deliveries can
be run in parallel. The maximum number of simultaneous remote deliveries for any one message is
set by the remote_max_parallel option. The order in which deliveries are done is not defined,
except that all local deliveries happen before any remote deliveries.

When it encounters a local delivery during a queue run, Exim checks its retry database to see if
there has been a previous temporary delivery failure for the address before running the local
transport. If there was a previous failure, Exim does not attempt a new delivery until the retry time
for the address is reached. However, this happens only for delivery attempts that are part of a queue
run. Local deliveries are always attempted when delivery immediately follows message reception,
even if retry times are set for them. This makes for better behaviour if one particular message is
causing problems (for example, causing quota overflow, or provoking an error in a filter file).

14 Receiving and delivering mail (3)

* Remote transports do their own retry handling, since an address may be deliverable to one of a
number of hosts, each of which may have a different retry time. If there have been previous
temporary failures and no host has reached its retry time, no delivery is attempted, whether in a
queue run or not. See chapter for details of retry strategies.

» If there were any permanent errors, a bounce message is returned to an appropriate address (the
sender in the common case), with details of the error for each failing address. Exim can be
configured to send copies of bounce messages to other addresses.

» If one or more addresses suffered a temporary failure, the message is left on the queue, to be tried
again later. Delivery of these addresses is said to be deferred.

* When all the recipient addresses have either been delivered or bounced, handling of the message is
complete. The spool files and message log are deleted, though the message log can optionally be
preserved if required.

3.14 Retry mechanism

Exim’s mechanism for retrying messages that fail to get delivered at the first attempt is the queue
runner process. You must either run an Exim daemon that uses the -q option with a time interval to
start queue runners at regular intervals, or use some other means (such as cron) to start them. If you
do not arrange for queue runners to be run, messages that fail temporarily at the first attempt will
remain on your queue for ever. A queue runner process works its way through the queue, one message
at a time, trying each delivery that has passed its retry time. You can run several queue runners at
once.

Exim uses a set of configured rules to determine when next to retry the failing address (see chapter
. These rules also specify when Exim should give up trying to deliver to the address, at which
point it generates a bounce message. If no retry rules are set for a particular host, address, and error
combination, no retries are attempted, and temporary errors are treated as permanent.

3.15 Temporary delivery failure

There are many reasons why a message may not be immediately deliverable to a particular address.
Failure to connect to a remote machine (because it, or the connection to it, is down) is one of the most
common. Temporary failures may be detected during routing as well as during the transport stage of
delivery. Local deliveries may be delayed if NFS files are unavailable, or if a mailbox is on a file
system where the user is over quota. Exim can be configured to impose its own quotas on local
mailboxes; where system quotas are set they will also apply.

If a host is unreachable for a period of time, a number of messages may be waiting for it by the time it
recovers, and sending them in a single SMTP connection is clearly beneficial. Whenever a delivery to
a remote host is deferred, Exim makes a note in its hints database, and whenever a successful SMTP
delivery has happened, it looks to see if any other messages are waiting for the same host. If any are
found, they are sent over the same SMTP connection, subject to a configuration limit as to the
maximum number in any one connection.

3.16 Permanent delivery failure

When a message cannot be delivered to some or all of its intended recipients, a bounce message is
generated. Temporary delivery failures turn into permanent errors when their timeout expires. All the
addresses that fail in a given delivery attempt are listed in a single message. If the original message
has many recipients, it is possible for some addresses to fail in one delivery attempt and others to fail
subsequently, giving rise to more than one bounce message. The wording of bounce messages can be
customized by the administrator. See chapter@lfor details.

Bounce messages contain an X-Failed-Recipients: header line that lists the failed addresses, for the
benefit of programs that try to analyse such messages automatically.

A bounce message is normally sent to the sender of the original message, as obtained from the
message’s envelope. For incoming SMTP messages, this is the address given in the MAIL command.

15 Receiving and delivering mail (3)

However, when an address is expanded via a forward or alias file, an alternative address can be
specified for delivery failures of the generated addresses. For a mailing list expansion (see section
j it is common to direct bounce messages to the manager of the list.

3.17 Failures to deliver bounce messages

If a bounce message (either locally generated or received from a remote host) itself suffers a perma-
nent delivery failure, the message is left on the queue, but it is frozen, awaiting the attention of an
administrator. There are options that can be used to make Exim discard such failed messages, or to
keep them for only a short time (see timeout_frozen_after and ignore_bounce_errors_after).

16 Receiving and delivering mail (3)

4. Building and installing Exim

4.1 Unpacking

Exim is distributed as a gzipped or bzipped tar file which, when unpacked, creates a directory with the
name of the current release (for example, exim-4.90) into which the following files are placed:

ACKNOWLEDGMENTS contains some acknowledgments

CHANGES contains a reference to where changes are documented
LICENCE the GNU General Public Licence

Makefile top-level make file

NOTICE conditions for the use of Exim

README list of files, directories and simple build instructions

Other files whose names begin with README may also be present. The following subdirectories are
created:

Local an empty directory for local configuration files
oS OS-specific files

doc documentation files

exim_monitor source files for the Exim monitor

scripts scripts used in the build process

src remaining source files

util independent utilities

The main utility programs are contained in the src directory, and are built with the Exim binary. The
util directory contains a few optional scripts that may be useful to some sites.

4.2 Multiple machine architectures and operating systems

The building process for Exim is arranged to make it easy to build binaries for a number of different
architectures and operating systems from the same set of source files. Compilation does not take place
in the src directory. Instead, a build directory is created for each architecture and operating system.
Symbolic links to the sources are installed in this directory, which is where the actual building takes
place. In most cases, Exim can discover the machine architecture and operating system for itself, but
the defaults can be overridden if necessary. A C99-capable compiler will be required for the build.

4.3 PCRE library

Exim no longer has an embedded PCRE library as the vast majority of modern systems include PCRE
as a system library, although you may need to install the PCRE or PCRE development package for
your operating system. If your system has a normal PCRE installation the Exim build process will
need no further configuration. If the library or the headers are in an unusual location you will need to
either set the PCRE_LIBS and INCLUDE directives appropriately, or set PCRE_CONFIG=yes to use
the installed pcre-config command. If your operating system has no PCRE support then you will need
to obtain and build the current PCRE from
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/. More information on PCRE is available
at http://www.pcre.org/.

4.4 DBM libraries

Even if you do not use any DBM files in your configuration, Exim still needs a DBM library in order
to operate, because it uses indexed files for its hints databases. Unfortunately, there are a number of
DBM libraries in existence, and different operating systems often have different ones installed.

If you are using Solaris, IRIX, one of the modern BSD systems, or a modern Linux distribution, the
DBM configuration should happen automatically, and you may be able to ignore this section.
Otherwise, you may have to learn more than you would like about DBM libraries from what follows.

Licensed versions of Unix normally contain a library of DBM functions operating via the ndbm
interface, and this is what Exim expects by default. Free versions of Unix seem to vary in what they

17 Building and installing Exim (4)

contain as standard. In particular, some early versions of Linux have no default DBM library, and
different distributors have chosen to bundle different libraries with their packaged versions. However,
the more recent releases seem to have standardized on the Berkeley DB library.

Different DBM libraries have different conventions for naming the files they use. When a program
opens a file called dbmfile, there are several possibilities:

(1) A traditional ndbm implementation, such as that supplied as part of Solaris, operates on two files
called dbmfile.dir and dbmfile.pag.

(2) The GNU library, gdbm, operates on a single file. If used via its ndbm compatibility interface it
makes two different hard links to it with names dbmfile.dir and dbmfile.pag, but if used via its
native interface, the file name is used unmodified.

(3) The Berkeley DB package, if called via its ndbm compatibility interface, operates on a single file
called dbmfile.db, but otherwise looks to the programmer exactly the same as the traditional
ndbm implementation.

(4) If the Berkeley package is used in its native mode, it operates on a single file called dbmfile; the
programmer’s interface is somewhat different to the traditional ndbm interface.

(5) To complicate things further, there are several very different versions of the Berkeley DB pack-
age. Version 1.85 was stable for a very long time, releases 2.x and 3.x were current for a while,
but the latest versions are now numbered 4.x. Maintenance of some of the earlier releases has
ceased. All versions of Berkeley DB can be obtained from http://www.sleepycat.com/.

(6) Yet another DBM library, called tdb, is available from http://download.sourceforge.net/tdb. It
has its own interface, and also operates on a single file.

Exim and its utilities can be compiled to use any of these interfaces. In order to use any version of the
Berkeley DB package in native mode, you must set USE_DB in an appropriate configuration file
(typically Local/Makefile). For example:

USE_DB=yes

Similarly, for gdbm you set USE_GDBM, and for tdb you set USE_TDB. An error is diagnosed if
you set more than one of these.

At the lowest level, the build-time configuration sets none of these options, thereby assuming an
interface of type (1). However, some operating system configuration files (for example, those for the
BSD operating systems and Linux) assume type (4) by setting USE_DB as their default, and the
configuration files for Cygwin set USE_GDBM. Anything you set in Local/Makefile, however, over-
rides these system defaults.

As well as setting USE_DB, USE_GDBM, or USE_TDB, it may also be necessary to set DBMLIB,
to cause inclusion of the appropriate library, as in one of these lines:

DBMLIB = -1db
DBMLIB = -1tdb

Settings like that will work if the DBM library is installed in the standard place. Sometimes it is not,
and the library’s header file may also not be in the default path. You may need to set INCLUDE to
specify where the header file is, and to specify the path to the library more fully in DBMLIB, as in
this example:

INCLUDE=-I/usr/local/include/db-4.1
DBMLIB=/usr/local/lib/db-4.1/1ibdb.a

There is further detailed discussion about the various DBM libraries in the file doc/dbm.discuss.txt in
the Exim distribution.

4.5 Pre-building configuration

Before building Exim, a local configuration file that specifies options independent of any operating
system has to be created with the name Local/Makefile. A template for this file is supplied as the file
src/EDITME, and it contains full descriptions of all the option settings therein. These descriptions are

18 Building and installing Exim (4)

therefore not repeated here. If you are building Exim for the first time, the simplest thing to do is to
copy src/EDITME to Local/Makefile, then read it and edit it appropriately.

There are three settings that you must supply, because Exim will not build without them. They are the
location of the run time configuration file (CONFIGURE_FILE), the directory in which Exim binaries
will be installed (BIN_DIRECTORY), and the identity of the Exim user (EXIM_USER and maybe
EXIM_GROUP as well). The value of CONFIGURE_FILE can in fact be a colon-separated list of file
names; Exim uses the first of them that exists.

There are a few other parameters that can be specified either at build time or at run time, to enable the
same binary to be used on a number of different machines. However, if the locations of Exim’s spool
directory and log file directory (if not within the spool directory) are fixed, it is recommended that
you specify them in Local/Makefile instead of at run time, so that errors detected early in Exim’s
execution (such as a malformed configuration file) can be logged.

Exim’s interfaces for calling virus and spam scanning software directly from access control lists are
not compiled by default. If you want to include these facilities, you need to set

WITH_CONTENT_SCAN=yes
in your Local/Makefile. For details of the facilities themselves, see chapter

If you are going to build the Exim monitor, a similar configuration process is required. The file
exim_monitor/EDITME must be edited appropriately for your installation and saved under the name
Local/eximon.conf. If you are happy with the default settings described in exim_monitor/EDITME,
Local/eximon.conf can be empty, but it must exist.

This is all the configuration that is needed in straightforward cases for known operating systems.
However, the building process is set up so that it is easy to override options that are set by default or
by operating-system-specific configuration files, for example to change the name of the C compiler,
which defaults to gce. See section 4. 13| below for details of how to do this.

4.6 Support for iconv()

The contents of header lines in messages may be encoded according to the rules described RFC 2047.
This makes it possible to transmit characters that are not in the ASCII character set, and to label them
as being in a particular character set. When Exim is inspecting header lines by means of the $h_
mechanism, it decodes them, and translates them into a specified character set (default is set at build
time). The translation is possible only if the operating system supports the iconv() function.

However, some of the operating systems that supply iconv() do not support very many conversions.
The GNU libiconv library (available from http://www.gnu.org/software/libiconv/) can be installed
on such systems to remedy this deficiency, as well as on systems that do not supply iconv() at all.
After installing libiconv, you should add

HAVE_TICONV=yes
to your Local/Makefile and rebuild Exim.

4.7 Including TLS/SSL encryption support

Exim can be built to support encrypted SMTP connections, using the STARTTLS command as per
RFC 2487. It can also support legacy clients that expect to start a TLS session immediately on
connection to a non-standard port (see the tls_on_connect_ports runtime option and the -tls-on-
connect command line option).

If you want to build Exim with TLS support, you must first install either the OpenSSL or GnuTLS
library. There is no cryptographic code in Exim itself for implementing SSL.

If OpenSSL is installed, you should set
SUPPORT_TLS=yes
TLS_LIBS=-1ssl —-lcrypto

19 Building and installing Exim (4)

in Local/Makefile. You may also need to specify the locations of the OpenSSL library and include
files. For example:

SUPPORT_TLS=yes
TLS_LIBS=-L/usr/local/openssl/lib -1ssl —-lcrypto
TLS_INCLUDE=-I/usr/local/openssl/include/

If you have pkg-config available, then instead you can just use:

SUPPORT_TLS=yes
USE_OPENSSL_PC=openssl

If GnuTLS is installed, you should set

SUPPORT_TLS=yes
USE_GNUTLS=yes
TLS_LIBS=-lgnutls —-ltasnl -lgcrypt

in Local/Makefile, and again you may need to specify the locations of the library and include files. For
example:

SUPPORT_TLS=yes

USE_GNUTLS=yes

TLS_LIBS=-L/usr/gnu/lib —-lgnutls -ltasnl -lgcrypt
TLS_INCLUDE=-I/usr/gnu/include

If you have pkg-config available, then instead you can just use:

SUPPORT_TLS=yes
USE_GNUTLS=yes
USE_GNUTLS_PC=gnutls

You do not need to set TLS_INCLUDE if the relevant directory is already specified in INCLUDE.
Details of how to configure Exim to make use of TLS are given in chapter @I

4.8 Use of tcpwrappers

Exim can be linked with the tcpwrappers library in order to check incoming SMTP calls using the
tcpwrappers control files. This may be a convenient alternative to Exim’s own checking facilities for
installations that are already making use of fcpwrappers for other purposes. To do this, you should set
USE_TCP_WRAPPERS in Local/Makefile, arrange for the file tcpd.h to be available at compile time,
and also ensure that the library libwrap.a is available at link time, typically by including -lwrap in
EXTRALIBS_EXIM. For example, if fcpwrappers is installed in /usr/local, you might have

USE_TCP_WRAPPERS=yes
CFLAGS=-0 —-I/usr/local/include
EXTRALIBS_EXIM=-L/usr/local/lib -lwrap

in Local/Makefile. The daemon name to use in the tcpwrappers control files is “exim”. For example,
the line

exim : LOCAL 192.168.1. .friendly.domain.example

in your /etc/hosts.allow file allows connections from the local host, from the subnet 192.168.1.0/24,
and from all hosts in friendly.domain.example. All other connections are denied. The daemon name
used by fcpwrappers can be changed at build time by setting TCP_WRAPPERS_DAEMON_NAME
in Local/Makefile, or by setting tcp_wrappers_daemon_name in the configure file. Consult the
tcpwrappers documentation for further details.

4.9 Including support for IPv6

Exim contains code for use on systems that have IPv6 support. Setting HAVE_IPV6=YES in
Local/Makefile causes the IPv6 code to be included; it may also be necessary to set IPV6_INCLUDE
and IPV6_LIBS on systems where the IPv6 support is not fully integrated into the normal include and
library files.

20 Building and installing Exim (4)

Two different types of DNS record for handling IPv6 addresses have been defined. AAAA records
(analogous to A records for IPv4) are in use, and are currently seen as the mainstream. Another record
type called A6 was proposed as better than AAAA because it had more flexibility. However, it was
felt to be over-complex, and its status was reduced to “experimental”. Exim used to have a compile
option for including A6 record support but this has now been withdrawn.

4.10 Dynamically loaded lookup module support

On some platforms, Exim supports not compiling all lookup types directly into the main binary,
instead putting some into external modules which can be loaded on demand. This permits packagers
to build Exim with support for lookups with extensive library dependencies without requiring all
users to install all of those dependencies. Most, but not all, lookup types can be built this way.

Set LOOKUP_MODULE_DIR to the directory into which the modules will be installed; Exim will only
load modules from that directory, as a security measure. You will need to set CFLAGS_DYNAMIC if
not already defined for your OS; see OS/Makefile-Linux for an example. Some other requirements for
adjusting EXTRALIBS may also be necessary, see src/EDITME for details.

Then, for each module to be loaded dynamically, define the relevant LOOKUP_ <lookup_type> flags to
have the value "2" instead of "yes". For example, this will build in Isearch but load sqlite and mysql
support on demand:

LOOKUP_LSEARCH=yes
LOOKUP_SQLITE=2
LOOKUP_MYSQL=2

4.11 The building process

Once Local/Makefile (and Local/eximon.conf, if required) have been created, run make at the top
level. It determines the architecture and operating system types, and creates a build directory if one
does not exist. For example, on a Sun system running Solaris 8, the directory build-SunOS5-5.8-sparc
is created. Symbolic links to relevant source files are installed in the build directory.

If this is the first time make has been run, it calls a script that builds a make file inside the build
directory, using the configuration files from the Local directory. The new make file is then passed to
another instance of make. This does the real work, building a number of utility scripts, and then
compiling and linking the binaries for the Exim monitor (if configured), a number of utility programs,
and finally Exim itself. The command make makefile can be used to force a rebuild of the make
file in the build directory, should this ever be necessary.

If you have problems building Exim, check for any comments there may be in the README file
concerning your operating system, and also take a look at the FAQ, where some common problems
are covered.

4.12 Output from “make”

The output produced by the make process for compile lines is often very unreadable, because these
lines can be very long. For this reason, the normal output is suppressed by default, and instead output
similar to that which appears when compiling the 2.6 Linux kernel is generated: just a short line for
each module that is being compiled or linked. However, it is still possible to get the full output, by
calling make like this:

FULLECHO="'"' make -e

The value of FULLECHO defaults to “@”, the flag character that suppresses command reflection in
make. When you ask for the full output, it is given in addition to the short output.

4.13 Overriding build-time options for Exim

The main make file that is created at the beginning of the building process consists of the concat-
enation of a number of files which set configuration values, followed by a fixed set of make instruc-

21 Building and installing Exim (4)

tions. If a value is set more than once, the last setting overrides any previous ones. This provides a
convenient way of overriding defaults. The files that are concatenated are, in order:

OS/Makefile-Default
OS/Makefile-<ostype>
Local/Makefile
Local/Makefile-<ostype>
Local/Makefile-<archtype>
Local/Makefile-<ostype>-<archtype>
OS/Makefile-Base

where <ostype> is the operating system type and <archtype> is the architecture type. Local/Makefile
is required to exist, and the building process fails if it is absent. The other three Local files are
optional, and are often not needed.

The values used for <ostype> and <archtype> are obtained from scripts called scripts/os-type and
scripts/arch-type respectively. If either of the environment variables EXIM_OSTYPE or EXIM_
ARCHTYPE is set, their values are used, thereby providing a means of forcing particular settings.
Otherwise, the scripts try to get values from the uname command. If this fails, the shell variables
OSTYPE and ARCHTYPE are inspected. A number of ad hoc transformations are then applied, to
produce the standard names that Exim expects. You can run these scripts directly from the shell in
order to find out what values are being used on your system.

OS/Makefile-Default contains comments about the variables that are set therein. Some (but not all) are
mentioned below. If there is something that needs changing, review the contents of this file and the
contents of the make file for your operating system (OS/Makefile-<ostype>) to see what the default
values are.

If you need to change any of the values that are set in OS/Makefile-Default or in OS/Makefile-
<ostype>, or to add any new definitions, you do not need to change the original files. Instead, you
should make the changes by putting the new values in an appropriate Local file. For example, when
building Exim in many releases of the Tru64-Unix (formerly Digital UNIX, formerly DEC-OSF1)
operating system, it is necessary to specify that the C compiler is called cc rather than gcc. Also, the
compiler must be called with the option -std1, to make it recognize some of the features of Standard
C that Exim uses. (Most other compilers recognize Standard C by default.) To do this, you should
create a file called Local/Makefile-OSF I containing the lines

CC=cc
CFLAGS=-stdl

If you are compiling for just one operating system, it may be easier to put these lines directly into
Local/Makefile.

Keeping all your local configuration settings separate from the distributed files makes it easy to
transfer them to new versions of Exim simply by copying the contents of the Local directory.

Exim contains support for doing LDAP, NIS, NIS+, and other kinds of file lookup, but not all systems
have these components installed, so the default is not to include the relevant code in the binary. All
the different kinds of file and database lookup that Exim supports are implemented as separate code
modules which are included only if the relevant compile-time options are set. In the case of LDAP,
NIS, and NIS+, the settings for Local/Makefile are:

LOOKUP_L1DAP=yes
LOOKUP_NIS=yes
LOOKUP_NISPLUS=yes

and similar settings apply to the other lookup types. They are all listed in sre/EDITME. In many cases
the relevant include files and interface libraries need to be installed before compiling Exim. However,
there are some optional lookup types (such as cdb) for which the code is entirely contained within
Exim, and no external include files or libraries are required. When a lookup type is not included in the
binary, attempts to configure Exim to use it cause run time configuration errors.

Many systems now use a tool called pkg-config to encapsulate information about how to compile
against a library; Exim has some initial support for being able to use pkg-config for lookups and

22 Building and installing Exim (4)

authenticators. For any given makefile variable which starts LOOKUP__ or AUTH_, you can add a new
variable with the _PC suffix in the name and assign as the value the name of the package to be
queried. The results of querying via the pkg-config command will be added to the appropriate
Makefile variables with += directives, so your version of make will need to support that syntax. For
instance:

LOOKUP_SQLITE=yes
LOOKUP_SQLITE_PC=sqglite3
AUTH_GSASL=yes

AUTH_GSASL_PC=libgsasl
AUTH_HEIMDAL_GSSAPI=yes
AUTH_HEIMDAL_GSSAPI_PC=heimdal-gssapi

Exim can be linked with an embedded Perl interpreter, allowing Perl subroutines to be called during
string expansion. To enable this facility,

EXIM PERL=perl.o
must be defined in Local/Makefile. Details of this facility are given in chapter

The location of the X11 libraries is something that varies a lot between operating systems, and there
may be different versions of X11 to cope with. Exim itself makes no use of X11, but if you are
compiling the Exim monitor, the X11 libraries must be available. The following three variables are set
in OS/Makefile-Default:

X11l=/usr/X11R6
XINCLUDE=-I$(X11l)/include
XLFLAGS=-L$ (X11) /1lib

These are overridden in some of the operating-system configuration files. For example, in
OS/Makefile-SunOS5 there is

X1l=/usr/openwin
XINCLUDE=-I$(X11l)/include
XLFLAGS=-L$ (X11) /1lib -R$(X11)/1ib

If you need to override the default setting for your operating system, place a definition of all three of
these variables into your Local/Makefile- < ostype > file.

If you need to add any extra libraries to the link steps, these can be put in a variable called
EXTRALIBS, which appears in all the link commands, but by default is not defined. In contrast,
EXTRALIBS_EXIM is used only on the command for linking the main Exim binary, and not for any
associated utilities.

There is also DBMLIB, which appears in the link commands for binaries that use DBM functions
(see also section . Finally, there is EXTRALIBS_EXIMON, which appears only in the link step
for the Exim monitor binary, and which can be used, for example, to include additional X11 libraries.

The make file copes with rebuilding Exim correctly if any of the configuration files are edited.
However, if an optional configuration file is deleted, it is necessary to touch the associated non-
optional file (that is, Local/Makefile or Local/eximon.conf) before rebuilding.

4.14 OS-specific header files

The OS directory contains a number of files with names of the form os.h-<ostype>. These are
system-specific C header files that should not normally need to be changed. There is a list of macro
settings that are recognized in the file OS/os.configuring, which should be consulted if you are porting
Exim to a new operating system.

4.15 Overriding build-time options for the monitor

A similar process is used for overriding things when building the Exim monitor, where the files that
are involved are

23 Building and installing Exim (4)

OS/eximon.conf-Default
OS/eximon.conf-<ostype>
Local/eximon.conf
Local/eximon.conf-<ostype>
Local/eximon.conf-<archtype>
Local/eximon.conf-<ostype>-<archtype>

As with Exim itself, the final three files need not exist, and in this case the OS/eximon.conf-<ostype>
file is also optional. The default values in OS/eximon.conf-Default can be overridden dynamically by
setting environment variables of the same name, preceded by EXIMON_. For example, setting
EXIMON_LOG_DEPTH in the environment overrides the value of LOG_DEPTH at run time.

4.16 Installing Exim binaries and scripts

The command make install runs the exim_install script with no arguments. The script copies
binaries and utility scripts into the directory whose name is specified by the BIN_DIRECTORY
setting in Local/Makefile. The install script copies files only if they are newer than the files they are
going to replace. The Exim binary is required to be owned by root and have the setuid bit set, for
normal configurations. Therefore, you must run make install as root so that it can set up the
Exim binary in this way. However, in some special situations (for example, if a host is doing no local
deliveries) it may be possible to run Exim without making the binary setuid root (see chapter [55| for
details).

Exim’s run time configuration file is named by the CONFIGURE_FILE setting in Local/Makefile. If
this names a single file, and the file does not exist, the default configuration file src/configure.default
is copied there by the installation script. If a run time configuration file already exists, it is left alone.
If CONFIGURE_FILE is a colon-separated list, naming several alternative files, no default is
installed.

One change is made to the default configuration file when it is installed: the default configuration
contains a router that references a system aliases file. The path to this file is set to the value specified
by SYSTEM_ALIASES_FILE in Local/Makefile (/etc/aliases by default). If the system aliases file
does not exist, the installation script creates it, and outputs a comment to the user.

The created file contains no aliases, but it does contain comments about the aliases a site should
normally have. Mail aliases have traditionally been kept in /etc/aliases. However, some operating
systems are now using /etc/mail/aliases. You should check if yours is one of these, and change Exim’s
configuration if necessary.

The default configuration uses the local host’s name as the only local domain, and is set up to do local
deliveries into the shared directory /var/mail, running as the local user. System aliases and .forward
files in users’ home directories are supported, but no NIS or NIS+ support is configured. Domains
other than the name of the local host are routed using the DNS, with delivery over SMTP.

It is possible to install Exim for special purposes (such as building a binary distribution) in a private
part of the file system. You can do this by a command such as

make DESTDIR=/some/directory/ install

This has the effect of pre-pending the specified directory to all the file paths, except the name of the
system aliases file that appears in the default configuration. (If a default alias file is created, its name
is modified.) For backwards compatibility, ROOT is used if DESTDIR is not set, but this usage is
deprecated.

Running make install does not copy the Exim 4 conversion script convert4r4. You will probably run
this only once if you are upgrading from Exim 3. None of the documentation files in the doc directory
are copied, except for the info files when you have set INFO_DIRECTORY, as described in section
below.

For the utility programs, old versions are renamed by adding the suffix .O to their names. The Exim
binary itself, however, is handled differently. It is installed under a name that includes the version
number and the compile number, for example exim-4.90-1. The script then arranges for a symbolic

24 Building and installing Exim (4)

link called exim to point to the binary. If you are updating a previous version of Exim, the script takes
care to ensure that the name exim is never absent from the directory (as seen by other processes).

If you want to see what the make install will do before running it for real, you can pass the -n option
to the installation script by this command:

make INSTALL_ARG=-n install

The contents of the variable INSTALL_ARG are passed to the installation script. You do not need to
be root to run this test. Alternatively, you can run the installation script directly, but this must be
from within the build directory. For example, from the top-level Exim directory you could use this
command:

(cd build-Sun0S5-5.5.1-sparc; ../scripts/exim_install -n)
There are two other options that can be supplied to the installation script.

* -no_chown bypasses the call to change the owner of the installed binary to root, and the call to
make it a setuid binary.

* -no_symlink bypasses the setting up of the symbolic link exim to the installed binary.
INSTALL_ARG can be used to pass these options to the script. For example:
make INSTALL_ARG=-no_symlink install

The installation script can also be given arguments specifying which files are to be copied. For
example, to install just the Exim binary, and nothing else, without creating the symbolic link, you
could use:

make INSTALL_ARG='-no_symlink exim' install

4.17 Installing info documentation

Not all systems use the GNU info system for documentation, and for this reason, the Texinfo source
of Exim’s documentation is not included in the main distribution. Instead it is available separately
from the ftp site (see section 1.5)).

If you have defined INFO_DIRECTORY in Local/Makefile and the Texinfo source of the documen-
tation is found in the source tree, running make install automatically builds the info files and
installs them.

4.18 Setting up the spool directory

When it starts up, Exim tries to create its spool directory if it does not exist. The Exim uid and gid are
used for the owner and group of the spool directory. Sub-directories are automatically created in the
spool directory as necessary.

4.19 Testing

Having installed Exim, you can check that the run time configuration file is syntactically valid by
running the following command, which assumes that the Exim binary directory is within your PATH
environment variable:

exim -bV

If there are any errors in the configuration file, Exim outputs error messages. Otherwise it outputs the
version number and build date, the DBM library that is being used, and information about which
drivers and other optional code modules are included in the binary. Some simple routing tests can be
done by using the address testing option. For example,

exim -bt <local username>
should verify that it recognizes a local mailbox, and

exim -bt <remote address>

25 Building and installing Exim (4)

a remote one. Then try getting it to deliver mail, both locally and remotely. This can be done by
passing messages directly to Exim, without going through a user agent. For example:

exim -v postmaster@your.domain.example
From: user(@your.domain.example

To: postmaster@your.domain.example
Subject: Testing Exim

This is a test message.
~“D

The -v option causes Exim to output some verification of what it is doing. In this case you should see
copies of three log lines, one for the message’s arrival, one for its delivery, and one containing
“Completed”.

If you encounter problems, look at Exim’s log files (mainlog and paniclog) to see if there is any
relevant information there. Another source of information is running Exim with debugging turned on,
by specifying the -d option. If a message is stuck on Exim’s spool, you can force a delivery with
debugging turned on by a command of the form

exim —-d -M <exim-message-id>

You must be root or an “admin user” in order to do this. The -d option produces rather a lot of output,
but you can cut this down to specific areas. For example, if you use -d-all+route only the debugging
information relevant to routing is included. (See the -d option in chapter for more details.)

One specific problem that has shown up on some sites is the inability to do local deliveries into a
shared mailbox directory, because it does not have the “sticky bit” set on it. By default, Exim tries to
create a lock file before writing to a mailbox file, and if it cannot create the lock file, the delivery is
deferred. You can get round this either by setting the “sticky bit” on the directory, or by setting a
specific group for local deliveries and allowing that group to create files in the directory (see the
comments above the local_delivery transport in the default configuration file). Another approach is to
configure Exim not to use lock files, but just to rely on fentl() locking instead. However, you should
do this only if all user agents also use fcntl() locking. For further discussion of locking issues, see
chapter

One thing that cannot be tested on a system that is already running an MTA is the receipt of incoming
SMTP mail on the standard SMTP port. However, the -0X option can be used to run an Exim daemon
that listens on some other port, or inetd can be used to do this. The -bh option and the
exim_checkaccess utility can be used to check out policy controls on incoming SMTP mail.

Testing a new version on a system that is already running Exim can most easily be done by building a
binary with a different CONFIGURE_FILE setting. From within the run time configuration, all other
file and directory names that Exim uses can be altered, in order to keep it entirely clear of the
production version.

4.20 Replacing another MTA with Exim

Building and installing Exim for the first time does not of itself put it in general use. The name by
which the system’s MTA is called by mail user agents is either /usr/sbin/sendmail, or
/usr/lib/sendmail (depending on the operating system), and it is necessary to make this name point to
the exim binary in order to get the user agents to pass messages to Exim. This is normally done by
renaming any existing file and making /usr/sbin/sendmail or /usr/lib/sendmail a symbolic link to the
exim binary. It is a good idea to remove any setuid privilege and executable status from the old MTA.
It is then necessary to stop and restart the mailer daemon, if one is running.

Some operating systems have introduced alternative ways of switching MTAs. For example, if you are
running FreeBSD, you need to edit the file /etc/mail/mailer.conf instead of setting up a symbolic link
as just described. A typical example of the contents of this file for running Exim is as follows:

sendmail /usr/exim/bin/exim
send-mail /usr/exim/bin/exim

26 Building and installing Exim (4)

mailqg /usr/exim/bin/exim -bp
newaliases /usr/bin/true

Once you have set up the symbolic link, or edited /etc/mail/mailer.conf, your Exim installation is
“live”. Check it by sending a message from your favourite user agent.

You should consider what to tell your users about the change of MTA. Exim may have different
capabilities to what was previously running, and there are various operational differences such as the
text of messages produced by command line options and in bounce messages. If you allow your users
to make use of Exim’s filtering capabilities, you should make the document entitled Exim’s interface
to mail filtering available to them.

4.21 Upgrading Exim
If you are already running Exim on your host, building and installing a new version automatically
makes it available to MUAs, or any other programs that call the MTA directly. However, if you are
running an Exim daemon, you do need to send it a HUP signal, to make it re-execute itself, and
thereby pick up the new binary. You do not need to stop processing mail in order to install a new
version of Exim. The install script does not modify an existing runtime configuration file.
4.22 Stopping the Exim daemon on Solaris
The standard command for stopping the mailer daemon on Solaris is

/etc/init.d/sendmail stop
If /usr/lib/sendmail has been turned into a symbolic link, this script fails to stop Exim because it uses
the command ps -e and greps the output for the text “sendmail”; this is not present because the actual
program name (that is, “exim”) is given by the ps command with these options. A solution is to
replace the line that finds the process id with something like

pid="cat /var/spool/exim/exim-daemon.pid’

to obtain the daemon’s pid directly from the file that Exim saves it in.

Note, however, that stopping the daemon does not “stop Exim”. Messages can still be received from
local processes, and if automatic delivery is configured (the normal case), deliveries will still occur.

27 Building and installing Exim (4)

5. The Exim command line

Exim’s command line takes the standard Unix form of a sequence of options, each starting with a
hyphen character, followed by a number of arguments. The options are compatible with the main
options of Sendmail, and there are also some additional options, some of which are compatible with
Smail 3. Certain combinations of options do not make sense, and provoke an error if used. The form
of the arguments depends on which options are set.

5.1 Setting options by program name

If Exim is called under the name mailg, it behaves as if the option -bp were present before any other
options. The -bp option requests a listing of the contents of the mail queue on the standard output.
This feature is for compatibility with some systems that contain a command of that name in one of the
standard libraries, symbolically linked to /us+/sbin/sendmail or /usr/lib/sendmail.

If Exim is called under the name rsmip it behaves as if the option -bS were present before any other
options, for compatibility with Smail. The -bS option is used for reading in a number of messages in
batched SMTP format.

If Exim is called under the name rmail it behaves as if the -i and -oee options were present before any
other options, for compatibility with Smail. The name rmail is used as an interface by some UUCP
systems.

If Exim is called under the name rung it behaves as if the option -q were present before any other
options, for compatibility with Smail. The -q option causes a single queue runner process to be
started.

If Exim is called under the name newaliases it behaves as if the option -bi were present before any
other options, for compatibility with Sendmail. This option is used for rebuilding Sendmail’s alias
file. Exim does not have the concept of a single alias file, but can be configured to run a given
command if called with the -bi option.

5.2 Trusted and admin users

Some Exim options are available only to trusted users and others are available only to admin users. In
the description below, the phrases “Exim user” and “Exim group” mean the user and group defined
by EXIM_USER and EXIM_GROUP in Local/Makefile or set by the exim_user and exim_group
options. These do not necessarily have to use the name “exim”.

* The trusted users are root, the Exim user, any user listed in the trusted_users configuration option,
and any user whose current group or any supplementary group is one of those listed in the trusted_
groups configuration option. Note that the Exim group is not automatically trusted.

Trusted users are always permitted to use the -f option or a leading “From ” line to specify the
envelope sender of a message that is passed to Exim through the local interface (see the -bm and -f
options below). See the untrusted_set_sender option for a way of permitting non-trusted users to
set envelope senders.

For a trusted user, there is never any check on the contents of the From: header line, and a Sender:
line is never added. Furthermore, any existing Sender: line in incoming local (non-TCP/IP) mess-
ages is not removed.

Trusted users may also specify a host name, host address, interface address, protocol name, ident
value, and authentication data when submitting a message locally. Thus, they are able to insert
messages into Exim’s queue locally that have the characteristics of messages received from a
remote host. Untrusted users may in some circumstances use -f, but can never set the other values
that are available to trusted users.

* The admin users are root, the Exim user, and any user that is a member of the Exim group or of any
group listed in the admin_groups configuration option. The current group does not have to be one
of these groups.

28 The Exim command line (5)

Admin users are permitted to list the queue, and to carry out certain operations on messages, for
example, to force delivery failures. It is also necessary to be an admin user in order to see the full
information provided by the Exim monitor, and full debugging output.

By default, the use of the -M, -q, -R, and -S options to cause Exim to attempt delivery of messages
on its queue is restricted to admin users. However, this restriction can be relaxed by setting the
prod_requires_admin option false (that is, specifying no_prod_requires_admin).

Similarly, the use of the -bp option to list all the messages in the queue is restricted to admin users
unless queue_list_requires_admin is set false.

Warning: If you configure your system so that admin users are able to edit Exim’s configuration file,
you are giving those users an easy way of getting root. There is further discussion of this issue at the
start of chapter

5.3 Command line options

Exim’s command line options are described in alphabetical order below. If none of the options that
specifies a specific action (such as starting the daemon or a queue runner, or testing an address, or
receiving a message in a specific format, or listing the queue) are present, and there is at least one
argument on the command line, -bm (accept a local message on the standard input, with the argu-
ments specifying the recipients) is assumed. Otherwise, Exim outputs a brief message about itself and
exits.

This is a pseudo-option whose only purpose is to terminate the options and therefore to cause
subsequent command line items to be treated as arguments rather than options, even if they begin
with hyphens.

--help
This option causes Exim to output a few sentences stating what it is. The same output is generated
if the Exim binary is called with no options and no arguments.

--version
This option is an alias for -bV and causes version information to be displayed.

-Ac
-Am
These options are used by Sendmail for selecting configuration files and are ignored by Exim.

-B<type>
This is a Sendmail option for selecting 7 or 8 bit processing. Exim is 8-bit clean; it ignores this
option.

-bd
This option runs Exim as a daemon, awaiting incoming SMTP connections. Usually the -bd option
is combined with the -q<time> option, to specify that the daemon should also initiate periodic
queue runs.

The -bd option can be used only by an admin user. If either of the -d (debugging) or -v (verifying)
options are set, the daemon does not disconnect from the controlling terminal. When running this
way, it can be stopped by pressing ctrl-C.

By default, Exim listens for incoming connections to the standard SMTP port on all the host’s
running interfaces. However, it is possible to listen on other ports, on multiple ports, and only on
specific interfaces. Chapter contains a description of the options that control this.

When a listening daemon is started without the use of -0X (that is, without overriding the normal
configuration), it writes its process id to a file called exim-daemon.pid in Exim’s spool directory.
This location can be overridden by setting PID_FILE_PATH in Local/Makefile. The file is written
while Exim is still running as root.

29 The Exim command line (5)

When -0X is used on the command line to start a listening daemon, the process id is not written to
the normal pid file path. However, -oP can be used to specify a path on the command line if a pid
file is required.

The SIGHUP signal can be used to cause the daemon to re-execute itself. This should be done
whenever Exim’s configuration file, or any file that is incorporated into it by means of the .include
facility, is changed, and also whenever a new version of Exim is installed. It is not necessary to do
this when other files that are referenced from the configuration (for example, alias files) are
changed, because these are reread each time they are used.

-bdf
This option has the same effect as -bd except that it never disconnects from the controlling
terminal, even when no debugging is specified.

-be
Run Exim in expansion testing mode. Exim discards its root privilege, to prevent ordinary users
from using this mode to read otherwise inaccessible files. If no arguments are given, Exim runs
interactively, prompting for lines of data. Otherwise, it processes each argument in turn.

If Exim was built with USE_READLINE=yes in Local/Makefile, it tries to load the libreadline
library dynamically whenever the -be option is used without command line arguments. If success-
ful, it uses the readline() function, which provides extensive line-editing facilities, for reading the
test data. A line history is supported.

Long expansion expressions can be split over several lines by using backslash continuations. As in
Exim’s run time configuration, white space at the start of continuation lines is ignored. Each
argument or data line is passed through the string expansion mechanism, and the result is output.
Variable values from the configuration file (for example, $qualify_domain) are available, but no
message-specific values (such as $message_exim_id) are set, because no message is being pro-
cessed (but see -bem and -Mset).

Note: If you use this mechanism to test lookups, and you change the data files or databases you are
using, you must exit and restart Exim before trying the same lookup again. Otherwise, because
each Exim process caches the results of lookups, you will just get the same result as before.

Macro processing is done on lines before string-expansion: new macros can be defined and macros
will be expanded. Because macros in the config file are often used for secrets, those are only
available to admin users.

-bem <filename>
This option operates like -be except that it must be followed by the name of a file. For example:

exim -bem /tmp/testmessage

The file is read as a message (as if receiving a locally-submitted non-SMTP message) before any
of the test expansions are done. Thus, message-specific variables such as $message_size and
$header_from: are available. However, no Received: header is added to the message. If the -t
option is set, recipients are read from the headers in the normal way, and are shown in the
$recipients variable. Note that recipients cannot be given on the command line, because further
arguments are taken as strings to expand (just like -be).

-bF <filename>
This option is the same as -bf except that it assumes that the filter being tested is a system filter.
The additional commands that are available only in system filters are recognized.

-bf <filename>
This option runs Exim in user filter testing mode; the file is the filter file to be tested, and a test
message must be supplied on the standard input. If there are no message-dependent tests in the
filter, an empty file can be supplied.

If you want to test a system filter file, use -bF instead of -bf. You can use both -bF and -bf on the
same command, in order to test a system filter and a user filter in the same run. For example:

exim -bF /system/filter -bf /user/filter </test/message

30 The Exim command line (5)

This is helpful when the system filter adds header lines or sets filter variables that are used by the
user filter.

If the test filter file does not begin with one of the special lines

Exim filter
Sieve filter

it is taken to be a normal .forward file, and is tested for validity under that interpretation. See
sections Mto |22.6 for a description of the possible contents of non-filter redirection lists.

The result of an Exim command that uses -bf, provided no errors are detected, is a list of the
actions that Exim would try to take if presented with the message for real. More details of filter
testing are given in the separate document entitled Exim’s interfaces to mail filtering.

When testing a filter file, the envelope sender can be set by the -f option, or by a “From ” line at
the start of the test message. Various parameters that would normally be taken from the envelope
recipient address of the message can be set by means of additional command line options (see the
next four options).

-bfd <domain>
This sets the domain of the recipient address when a filter file is being tested by means of the -bf
option. The default is the value of $qualify_domain.

-bfl <local part>
This sets the local part of the recipient address when a filter file is being tested by means of the -bf
option. The default is the username of the process that calls Exim. A local part should be specified
with any prefix or suffix stripped, because that is how it appears to the filter when a message is
actually being delivered.

-bfp <prefix>
This sets the prefix of the local part of the recipient address when a filter file is being tested by
means of the -bf option. The default is an empty prefix.

-bfs <suffix>
This sets the suffix of the local part of the recipient address when a filter file is being tested by
means of the -bf option. The default is an empty suffix.

-bh <IP address>
This option runs a fake SMTP session as if from the given IP address, using the standard input and
output. The IP address may include a port number at the end, after a full stop. For example:

exim -bh 10.9.8.7.1234
exim -bh fe80::200:20ff:£fe86:a2061.5678

When an IPv6 address is given, it is converted into canonical form. In the case of the second
example above, the value of $sender_host_address after conversion to the canonical form is
fe80:0000:0000:0a00:20ff:fe86:2061.5678.

Comments as to what is going on are written to the standard error file. These include lines
beginning with “LOG” for anything that would have been logged. This facility is provided for
testing configuration options for incoming messages, to make sure they implement the required
policy. For example, you can test your relay controls using -bh.

Warning 1: You can test features of the configuration that rely on ident (RFC 1413) information
by using the -oMt option. However, Exim cannot actually perform an ident callout when testing
using -bh because there is no incoming SMTP connection.

Warning 2: Address verification callouts (see section §3.45) are also skipped when testing using
-bh. If you want these callouts to occur, use -bhe instead.

Messages supplied during the testing session are discarded, and nothing is written to any of the
real log files. There may be pauses when DNS (and other) lookups are taking place, and of course
these may time out. The -oMi option can be used to specify a specific IP interface and port if this
is important, and -oMaa and -oMai can be used to set parameters as if the SMTP session were
authenticated.

31 The Exim command line (5)

The exim_checkaccess utility is a “packaged” version of -bh whose output just states whether a
given recipient address from a given host is acceptable or not. See section [53 SI

Features such as authentication and encryption, where the client input is not plain text, cannot
easily be tested with -bh. Instead, you should use a specialized SMTP test program such as swaks
(http://jetmore.org/john/code/#swaks).

-bhe <IP address>
This option operates in the same way as -bh, except that address verification callouts are per-
formed if required. This includes consulting and updating the callout cache database.

-bi
Sendmail interprets the -bi option as a request to rebuild its alias file. Exim does not have the
concept of a single alias file, and so it cannot mimic this behaviour. However, calls to
/usr/lib/sendmail with the -bi option tend to appear in various scripts such as NIS make files, so
the option must be recognized.

If -bi is encountered, the command specified by the bi_command configuration option is run,
under the uid and gid of the caller of Exim. If the -0A option is used, its value is passed to the
command as an argument. The command set by bi_command may not contain arguments. The
command can use the exim_dbmbuild utility, or some other means, to rebuild alias files if this is
required. If the bi_command option is not set, calling Exim with -bi is a no-op.

-bI:help
We shall provide various options starting —bI: for querying Exim for information. The output of
many of these will be intended for machine consumption. This one is not. The -bI:help option
asks Exim for a synopsis of supported options beginning —bI :. Use of any of these options shall
cause Exim to exit after producing the requested output.

-bI:dscp
This option causes Exim to emit an alphabetically sorted list of all recognised DSCP names.

-bI:sieve
This option causes Exim to emit an alphabetically sorted list of all supported Sieve protocol
extensions on stdout, one per line. This is anticipated to be useful for ManageSieve (RFC 5804)
implementations, in providing that protocol’s STIEVE capability response line. As the precise list
may depend upon compile-time build options, which this option will adapt to, this is the only way
to guarantee a correct response.

-bm
This option runs an Exim receiving process that accepts an incoming, locally-generated message
on the standard input. The recipients are given as the command arguments (except when -t is also
present — see below). Each argument can be a comma-separated list of RFC 2822 addresses. This
is the default option for selecting the overall action of an Exim call; it is assumed if no other
conflicting option is present.

If any addresses in the message are unqualified (have no domain), they are qualified by the values
of the qualify_domain or qualify_recipient options, as appropriate. The -bnq option (see below)
provides a way of suppressing this for special cases.

Policy checks on the contents of local messages can be enforced by means of the non-SMTP ACL.
See chapter for details.

The return code is zero if the message is successfully accepted. Otherwise, the action is controlled
by the -oex option setting — see below.

The format of the message must be as defined in RFC 2822, except that, for compatibility with
Sendmail and Smail, a line in one of the forms

From sender Fri Jan 5 12:55 GMT 1997
From sender Fri, 5 Jan 97 12:55:01

(with the weekday optional, and possibly with additional text after the date) is permitted to appear
at the start of the message. There appears to be no authoritative specification of the format of this

32 The Exim command line (5)

line. Exim recognizes it by matching against the regular expression defined by the uucp_from_
pattern option, which can be changed if necessary.

The specified sender is treated as if it were given as the argument to the -f option, but if a -f option
is also present, its argument is used in preference to the address taken from the message. The caller
of Exim must be a trusted user for the sender of a message to be set in this way.

-bmalware <filename>
This debugging option causes Exim to scan the given file or directory (depending on the used
scanner interface), using the malware scanning framework. The option of av_scanner influences
this option, so if av_scanner’s value is dependent upon an expansion then the expansion should
have defaults which apply to this invocation. ACLs are not invoked, so if av_scanner references
an ACL variable then that variable will never be populated and -bmalware will fail.

Exim will have changed working directory before resolving the filename, so using fully qualified
pathnames is advisable. Exim will be running as the Exim user when it tries to open the file, rather
than as the invoking user. This option requires admin privileges.

The -bmalware option will not be extended to be more generally useful, there are better tools
for file-scanning. This option exists to help administrators verify their Exim and AV scanner
configuration.

-bnq
By default, Exim automatically qualifies unqualified addresses (those without domains) that
appear in messages that are submitted locally (that is, not over TCP/IP). This qualification applies
both to addresses in envelopes, and addresses in header lines. Sender addresses are qualified using
qualify_domain, and recipient addresses using qualify_recipient (which defaults to the value of
qualify_domain).

Sometimes, qualification is not wanted. For example, if -bS (batch SMTP) is being used to re-
submit messages that originally came from remote hosts after content scanning, you probably do
not want to qualify unqualified addresses in header lines. (Such lines will be present only if you
have not enabled a header syntax check in the appropriate ACL.)

The -bnq option suppresses all qualification of unqualified addresses in messages that originate on
the local host. When this is used, unqualified addresses in the envelope provoke errors (causing
message rejection) and unqualified addresses in header lines are left alone.

-bP
If this option is given with no arguments, it causes the values of all Exim’s main configuration
options to be written to the standard output. The values of one or more specific options can be
requested by giving their names as arguments, for example:

exim -bP qualify_domain hold_domains

However, any option setting that is preceded by the word “hide” in the configuration file is not
shown in full, except to an admin user. For other users, the output is as in this example:

mysgl_servers = <value not displayable>

If config is given as an argument, the config is output, as it was parsed, any include file resolved,
any comment removed.

If config_file is given as an argument, the name of the run time configuration file is output.
(configure_file works too, for backward compatibility.) If a list of configuration files was supplied,
the value that is output here is the name of the file that was actually used.

If the -n flag is given, then for most modes of -bP operation the name will not be output.

If log_file_path or pid_file_path are given, the names of the directories where log files and
daemon pid files are written are output, respectively. If these values are unset, log files are written
in a sub-directory of the spool directory called log, and the pid file is written directly into the spool
directory.

If -bP is followed by a name preceded by +, for example,

33 The Exim command line (5)

exim —-bP +local_domains

it searches for a matching named list of any type (domain, host, address, or local part) and outputs
what it finds.

If one of the words router, transport, or authenticator is given, followed by the name of an
appropriate driver instance, the option settings for that driver are output. For example:

exim -bP transport local_delivery

The generic driver options are output first, followed by the driver’s private options. A list of the
names of drivers of a particular type can be obtained by using one of the words router_list,
transport_list, or authenticator_list, and a complete list of all drivers with their option settings
can be obtained by using routers, transports, or authenticators.

If environment is given as an argument, the set of environment variables is output, line by line.
Using the -n flag suppresses the value of the variables.

If invoked by an admin user, then macro, macro_list and macros are available, similarly to the
drivers. Because macros are sometimes used for storing passwords, this option is restricted. The
output format is one item per line.

-bp
This option requests a listing of the contents of the mail queue on the standard output. If the -bp
option is followed by a list of message ids, just those messages are listed. By default, this option
can be used only by an admin user. However, the queue_list_requires_admin option can be set
false to allow any user to see the queue.

Each message on the queue is displayed as in the following example:

25m 2.9K 0t5C6£f-0000c8-00 <alice@wonderland.fict.example>
red.king@looking—-glass.fict.example
<other addresses>

The first line contains the length of time the message has been on the queue (in this case 25
minutes), the size of the message (2.9K), the unique local identifier for the message, and the
message sender, as contained in the envelope. For bounce messages, the sender address is empty,
and appears as “<>”. If the message was submitted locally by an untrusted user who overrode the
default sender address, the user’s login name is shown in parentheses before the sender address.

If the message is frozen (attempts to deliver it are suspended) then the text “*** frozen ***” is
displayed at the end of this line.

The recipients of the message (taken from the envelope, not the headers) are displayed on subse-
quent lines. Those addresses to which the message has already been delivered are marked with the
letter D. If an original address gets expanded into several addresses via an alias or forward file, the
original is displayed with a D only when deliveries for all of its child addresses are complete.

-bpa
This option operates like -bp, but in addition it shows delivered addresses that were generated
from the original top level address(es) in each message by alias or forwarding operations. These
addresses are flagged with “+D” instead of just “D”.

-bpc
This option counts the number of messages on the queue, and writes the total to the standard
output. It is restricted to admin users, unless queue_list_requires_admin is set false.

-bpr
This option operates like -bp, but the output is not sorted into chronological order of message
arrival. This can speed it up when there are lots of messages on the queue, and is particularly
useful if the output is going to be post-processed in a way that doesn’t need the sorting.

-bpra
This option is a combination of -bpr and -bpa.

34 The Exim command line (5)

-bpru
This option is a combination of -bpr and -bpu.

-bpu
This option operates like -bp but shows only undelivered top-level addresses for each message
displayed. Addresses generated by aliasing or forwarding are not shown, unless the message was
deferred after processing by a router with the one_time option set.

-brt
This option is for testing retry rules, and it must be followed by up to three arguments. It causes
Exim to look for a retry rule that matches the values and to write it to the standard output. For
example:

exim -brt bach.comp.mus.example
Retry rule: *.comp.mus.example F,2h,15m; F,4d,30m;

See chapter for a description of Exim’s retry rules. The first argument, which is required, can be
a complete address in the form local_part@domain, or it can be just a domain name. If the second
argument contains a dot, it is interpreted as an optional second domain name; if no retry rule is
found for the first argument, the second is tried. This ties in with Exim’s behaviour when looking
for retry rules for remote hosts — if no rule is found that matches the host, one that matches the
mail domain is sought. Finally, an argument that is the name of a specific delivery error, as used in
setting up retry rules, can be given. For example:

exim -brt haydn.comp.mus.example quota_3d
Retry rule: *Q@haydn.comp.mus.example quota_3d F,1h,15m

-brw
This option is for testing address rewriting rules, and it must be followed by a single argument,
consisting of either a local part without a domain, or a complete address with a fully qualified
domain. Exim outputs how this address would be rewritten for each possible place it might appear.
See chapter |31|for further details.

-bS
This option is used for batched SMTP input, which is an alternative interface for non-interactive
local message submission. A number of messages can be submitted in a single run. However,
despite its name, this is not really SMTP input. Exim reads each message’s envelope from SMTP
commands on the standard input, but generates no responses. If the caller is trusted, or untrusted_
set_sender is set, the senders in the SMTP MAIL commands are believed; otherwise the sender is
always the caller of Exim.

The message itself is read from the standard input, in SMTP format (leading dots doubled),
terminated by a line containing just a single dot. An error is provoked if the terminating dot is
missing. A further message may then follow.

As for other local message submissions, the contents of incoming batch SMTP messages can be
checked using the non-SMTP ACL (see chapter . Unqualified addresses are automatically
qualified using qualify_domain and qualify_recipient, as appropriate, unless the -bnq option is
used.

Some other SMTP commands are recognized in the input. HELO and EHLO act as RSET; VRFY,
EXPN, ETRN, and HELP act as NOOP; QUIT quits, ignoring the rest of the standard input.

If any error is encountered, reports are written to the standard output and error streams, and Exim
gives up immediately. The return code is O if no error was detected; it is 1 if one or more messages
were accepted before the error was detected; otherwise it is 2.

More details of input using batched SMTP are given in section

This option causes Exim to accept one or more messages by reading SMTP commands on the
standard input, and producing SMTP replies on the standard output. SMTP policy controls, as
defined in ACLs (see chapter are applied. Some user agents use this interface as a way of
passing locally-generated messages to the MTA.

35 The Exim command line (5)

In this usage, if the caller of Exim is trusted, or untrusted_set_sender is set, the senders of
messages are taken from the SMTP MAIL commands. Otherwise the content of these commands
is ignored and the sender is set up as the calling user. Unqualified addresses are automatically
qualified using qualify_domain and qualify_recipient, as appropriate, unless the -bnq option is
used.

The -bs option is also used to run Exim from inetd, as an alternative to using a listening daemon.
Exim can distinguish the two cases by checking whether the standard input is a TCP/IP socket.
When Exim is called from inetd, the source of the mail is assumed to be remote, and the comments
above concerning senders and qualification do not apply. In this situation, Exim behaves in exactly
the same way as it does when receiving a message via the listening daemon.

This option runs Exim in address testing mode, in which each argument is taken as a recipient
address to be tested for deliverability. The results are written to the standard output. If a test fails,
and the caller is not an admin user, no details of the failure are output, because these might contain
sensitive information such as usernames and passwords for database lookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be tested.

Unlike the -be test option, you cannot arrange for Exim to use the readline() function, because it is
running as root and there are security issues.

Each address is handled as if it were the recipient address of a message (compare the -bv option).
It is passed to the routers and the result is written to the standard output. However, any router that
has no_address_test set is bypassed. This can make -bt easier to use for genuine routing tests if
your first router passes everything to a scanner program.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at least
one could not be resolved for some reason. Return code 0 is given only when all addresses
succeed.

Note: When actually delivering a message, Exim removes duplicate recipient addresses after
routing is complete, so that only one delivery takes place. This does not happen when testing with
-bt; the full results of routing are always shown.

Warning: -bt can only do relatively simple testing. If any of the routers in the configuration makes
any tests on the sender address of a message, you can use the -f option to set an appropriate sender
when running -bt tests. Without it, the sender is assumed to be the calling user at the default
qualifying domain. However, if you have set up (for example) routers whose behaviour depends on
the contents of an incoming message, you cannot test those conditions using -bt. The -N option
provides a possible way of doing such tests.

-bV
This option causes Exim to write the current version number, compilation number, and compi-
lation date of the exim binary to the standard output. It also lists the DBM library that is being
used, the optional modules (such as specific lookup types), the drivers that are included in the
binary, and the name of the run time configuration file that is in use.

As part of its operation, -bV causes Exim to read and syntax check its configuration file. However,
this is a static check only. It cannot check values that are to be expanded. For example, although a
misspelt ACL verb is detected, an error in the verb’s arguments is not. You cannot rely on -bV
alone to discover (for example) all the typos in the configuration; some realistic testing is needed.
The -bh and -N options provide more dynamic testing facilities.

-bv
This option runs Exim in address verification mode, in which each argument is taken as a recipient
address to be verified by the routers. (This does not involve any verification callouts). During
normal operation, verification happens mostly as a consequence processing a verify condition in
an ACL (see chapter . If you want to test an entire ACL, possibly including callouts, see the
-bh and -bhc options.

36 The Exim command line (5)

If verification fails, and the caller is not an admin user, no details of the failure are output, because
these might contain sensitive information such as usernames and passwords for database lookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be verified.

Unlike the -be test option, you cannot arrange for Exim to use the readline() function, because it is
running as exim and there are security issues.

Verification differs from address testing (the -bt option) in that routers that have no_verify set are
skipped, and if the address is accepted by a router that has fail_verify set, verification fails. The
address is verified as a recipient if -bv is used; to test verification for a sender address, -bvs should
be used.

If the -v option is not set, the output consists of a single line for each address, stating whether it
was verified or not, and giving a reason in the latter case. Without -v, generating more than one
address by redirection causes verification to end successfully, without considering the generated
addresses. However, if just one address is generated, processing continues, and the generated
address must verify successfully for the overall verification to succeed.

When -v is set, more details are given of how the address has been handled, and in the case of
address redirection, all the generated addresses are also considered. Verification may succeed for
some and fail for others.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at least
one could not be resolved for some reason. Return code O is given only when all addresses
succeed.

If any of the routers in the configuration makes any tests on the sender address of a message, you
should use the -f option to set an appropriate sender when running -bv tests. Without it, the sender
is assumed to be the calling user at the default qualifying domain.

-bvs
This option acts like -bv, but verifies the address as a sender rather than a recipient address. This
affects any rewriting and qualification that might happen.

-bw
This option runs Exim as a daemon, awaiting incoming SMTP connections, similarly to the -bd
option. All port specifications on the command-line and in the configuration file are ignored.
Queue-running may not be specified.

In this mode, Exim expects to be passed a socket as fd 0 (stdin) which is listening for connections.
This permits the system to start up and have inetd (or equivalent) listen on the SMTP ports,
starting an Exim daemon for each port only when the first connection is received.

If the option is given as -bw<time> then the time is a timeout, after which the daemon will exit,
which should cause inetd to listen once more.

-C <filelist>
This option causes Exim to find the run time configuration file from the given list instead of from
the list specified by the CONFIGURE_FILE compile-time setting. Usually, the list will consist of
just a single file name, but it can be a colon-separated list of names. In this case, the first file that
exists is used. Failure to open an existing file stops Exim from proceeding any further along the
list, and an error is generated.

When this option is used by a caller other than root, and the list is different from the compiled-in
list, Exim gives up its root privilege immediately, and runs with the real and effective uid and gid
set to those of the caller. However, if a TRUSTED_ CONFIG_LIST file is defined in
Local/Makefile, that file contains a list of full pathnames, one per line, for configuration files which
are trusted. Root privilege is retained for any configuration file so listed, as long as the caller is the
Exim user (or the user specified in the CONFIGURE_OWNER option, if any), and as long as the
configuration file is not writeable by inappropriate users or groups.

Leaving TRUSTED_CONFIG_LIST unset precludes the possibility of testing a configuration
using -C right through message reception and delivery, even if the caller is root. The reception

37 The Exim command line (5)

works, but by that time, Exim is running as the Exim user, so when it re-executes to regain
privilege for the delivery, the use of -C causes privilege to be lost. However, root can test reception
and delivery using two separate commands (one to put a message on the queue, using -odq, and
another to do the delivery, using -M).

If ALT_CONFIG_PREFIX is defined in Local/Makefile, it specifies a prefix string with which any
file named in a -C command line option must start. In addition, the file name must not contain the
sequence / . . /. However, if the value of the -C option is identical to the value of CONFIGURE_
FILE in Local/Makefile, Exim ignores -C and proceeds as usual. There is no default setting for
ALT_CONFIG_PREFIX; when it is unset, any file name can be used with -C.

ALT_CONFIG_PREFIX can be used to confine alternative configuration files to a directory to
which only root has access. This prevents someone who has broken into the Exim account from
running a privileged Exim with an arbitrary configuration file.

The -C facility is useful for ensuring that configuration files are syntactically correct, but cannot be
used for test deliveries, unless the caller is privileged, or unless it is an exotic configuration that
does not require privilege. No check is made on the owner or group of the files specified by this
option.

-D<macro>=<value>
This option can be used to override macro definitions in the configuration file (see section .
However, like -C, if it is used by an unprivileged caller, it causes Exim to give up its root privilege.
If DISABLE_D_OPTION is defined in Local/Makefile, the use of -D is completely disabled, and
its use causes an immediate error exit.

If WHITELIST_D_MACROS is defined in Local/Makefile then it should be a colon-separated list
of macros which are considered safe and, if -D only supplies macros from this list, and the values
are acceptable, then Exim will not give up root privilege if the caller is root, the Exim run-time
user, or the CONFIGURE_OWNER, if set. This is a transition mechanism and is expected to be
removed in the future. Acceptable values for the macros satisfy the regexp: ~ [A-Za-z0-9_/ .-
1*$

The entire option (including equals sign if present) must all be within one command line item. -D
can be used to set the value of a macro to the empty string, in which case the equals sign is
optional. These two commands are synonymous:

exim —-DABC
exim —-DABC=

To include spaces in a macro definition item, quotes must be used. If you use quotes, spaces are
permitted around the macro name and the equals sign. For example:

exim '-D ABC = something'

-D may be repeated up to 10 times on a command line. Only macro names up to 22 letters long can
be set.

-d<debug options>
This option causes debugging information to be written to the standard error stream. It is restricted
to admin users because debugging output may show database queries that contain password infor-
mation. Also, the details of users’ filter files should be protected. If a non-admin user uses -d,
Exim writes an error message to the standard error stream and exits with a non-zero return code.

When -d is used, -v is assumed. If -d is given on its own, a lot of standard debugging data is
output. This can be reduced, or increased to include some more rarely needed information, by
directly following -d with a string made up of names preceded by plus or minus characters. These
add or remove sets of debugging data, respectively. For example, -d+filter adds filter debugging,
whereas -d-all+filter selects only filter debugging. Note that no spaces are allowed in the debug
setting. The available debugging categories are:

acl ACL interpretation
auth authenticators
deliver general delivery logic

38 The Exim command line (5)

dns DNS lookups (see also resolver)

dnsbl DNS black list (aka RBL) code

exec arguments for execy() calls

expand detailed debugging for string expansions
filter filter handling

hints_lookup
host_lookup
ident

hints data lookups
all types of name-to-IP address handling
ident lookup

interface lists of local interfaces

lists matching things in lists

load system load checks

local_scan can be used by local_scan() (see chapter
lookup general lookup code and all lookups
memory memory handling

pid add pid to debug output lines

process_info
queue_run

setting info for the process log
queue runs

receive general message reception logic

resolver turn on the DNS resolver’s debugging output
retry retry handling

rewrite address rewriting

route address routing

timestamp add timestamp to debug output lines

tls TLS logic

transport transports

uid changes of uid/gid and looking up uid/gid
verify address verification logic

all almost all of the above (see below), and also -v

The all option excludes memory when used as +all, but includes it for —all. The reason for
this is that +all is something that people tend to use when generating debug output for Exim
maintainers. If +memory is included, an awful lot of output that is very rarely of interest is
generated, so it now has to be explicitly requested. However, —all does turn everything off.

The resolver option produces output only if the DNS resolver was compiled with DEBUG
enabled. This is not the case in some operating systems. Also, unfortunately, debugging output
from the DNS resolver is written to stdout rather than stderr.

The default (-d with no argument) omits expand, filter, interface, load, memory, pid,
resolver, and t imestamp. However, the pid selector is forced when debugging is turned on
for a daemon, which then passes it on to any re-executed Exims. Exim also automatically adds the
pid to debug lines when several remote deliveries are run in parallel.

The timestamp selector causes the current time to be inserted at the start of all debug output
lines. This can be useful when trying to track down delays in processing.

If the debug_print option is set in any driver, it produces output whenever any debugging is
selected, or if -v is used.

-dd<debug options>

This option behaves exactly like -d except when used on a command that starts a daemon process.
In that case, debugging is turned off for the subprocesses that the daemon creates. Thus, it is useful
for monitoring the behaviour of the daemon without creating as much output as full debugging
does.

-dropcr

-E

This is an obsolete option that is now a no-op. It used to affect the way Exim handled CR and LF
characters in incoming messages. What happens now is described in section E7.2‘

This option specifies that an incoming message is a locally-generated delivery failure report. It is
used internally by Exim when handling delivery failures and is not intended for external use. Its

39 The Exim command line (5)

only effect is to stop Exim generating certain messages to the postmaster, as otherwise message
cascades could occur in some situations. As part of the same option, a message id may follow the
characters -E. If it does, the log entry for the receipt of the new message contains the id, following
“R=", as a cross-reference.

-ex
There are a number of Sendmail options starting with -oe which seem to be called by various
programs without the leading o in the option. For example, the vacation program uses -eq. Exim
treats all options of the form -ex as synonymous with the corresponding -oex options.

-F <string>
This option sets the sender’s full name for use when a locally-generated message is being
accepted. In the absence of this option, the user’s gecos entry from the password data is used. As
users are generally permitted to alter their gecos entries, no security considerations are involved.
White space between -F and the <string> is optional.

-f <address>
This option sets the address of the envelope sender of a locally-generated message (also known as
the return path). The option can normally be used only by a trusted user, but untrusted_set_
sender can be set to allow untrusted users to use it.

Processes running as root or the Exim user are always trusted. Other trusted users are defined by
the trusted_users or trusted_groups options. In the absence of -f, or if the caller is not trusted,
the sender of a local message is set to the caller’s login name at the default qualify domain.

There is one exception to the restriction on the use of -f: an empty sender can be specified by any
user, trusted or not, to create a message that can never provoke a bounce. An empty sender can be
specified either as an empty string, or as a pair of angle brackets with nothing between them, as in
these examples of shell commands:

exim —-f '<>' user@Rdomain
exim —-f "" user@Rdomain

In addition, the use of -f is not restricted when testing a filter file with -bf or when testing or
verifying addresses using the -bt or -bv options.

Allowing untrusted users to change the sender address does not of itself make it possible to send
anonymous mail. Exim still checks that the From: header refers to the local user, and if it does not,
it adds a Sender: header, though this can be overridden by setting no_local_from_check.

White space between -f and the <address> is optional (that is, they can be given as two arguments
or one combined argument). The sender of a locally-generated message can also be set (when
permitted) by an initial “From ” line in the message — see the description of -bm above — but if -f
is also present, it overrides “From ”.

-G
This option is equivalent to an ACL applying:
control = suppress_local_fixups

for every message received. Note that Sendmail will complain about such bad formatting, where
Exim silently just does not fix it up. This may change in future.

As this affects audit information, the caller must be a trusted user to use this option.

-h <number>
This option is accepted for compatibility with Sendmail, but has no effect. (In Sendmail it over-
rides the “hop count” obtained by counting Received: headers.)

-i
This option, which has the same effect as -oi, specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. I can find no documentation for this option in Solaris
2.4 Sendmail, but the mailx command in Solaris 2.4 uses it. See also -ti.

40 The Exim command line (5)

-L <tag>
This option is equivalent to setting syslog_processname in the config file and setting log_file_
path to syslog. Its use is restricted to administrators. The configuration file has to be read and
parsed, to determine access rights, before this is set and takes effect, so early configuration file
errors will not honour this flag.

The tag should not be longer than 32 characters.

-M <message id> <message id> ...
This option requests Exim to run a delivery attempt on each message in turn. If any of the
messages are frozen, they are automatically thawed before the delivery attempt. The settings of
queue_domains, queue_smtp_domains, and hold_domains are ignored.

Retry hints for any of the addresses are overridden — Exim tries to deliver even if the normal retry
time has not yet been reached. This option requires the caller to be an admin user. However, there
is an option called prod_requires_admin which can be set false to relax this restriction (and also
the same requirement for the -q, -R, and -S options).

The deliveries happen synchronously, that is, the original Exim process does not terminate until all
the delivery attempts have finished. No output is produced unless there is a serious error. If you
want to see what is happening, use the -v option as well, or inspect Exim’s main log.

-Mar <message id> <address> <address> ...
This option requests Exim to add the addresses to the list of recipients of the message (“ar” for
“add recipients”). The first argument must be a message id, and the remaining ones must be email
addresses. However, if the message is active (in the middle of a delivery attempt), it is not altered.
This option can be used only by an admin user.

-MC <transport> <hostname> <sequence number> <message id>
This option is not intended for use by external callers. It is used internally by Exim to invoke
another instance of itself to deliver a waiting message using an existing SMTP connection, which
is passed as the standard input. Details are given in chapte This must be the final option, and
the caller must be root or the Exim user in order to use it.

-MCA
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option. It signifies that the connection to the remote host has been authenticated.

-MCD
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option. It signifies that the remote host supports the ESMTP DSN extension.

-MCG <queue name>
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option. It signifies that an alternate queue is used, named by the following argument.

-MCK
This option is not intended for use by external callers. It is used internally by Exim in conjunction

with the -MC option. It signifies that an remote host supports the ESMTP CHUNKING extension.

-MCP
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option. It signifies that the server to which Exim is connected supports pipelining.

-MCQ <process id> <pipe fd>
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option when the original delivery was started by a queue runner. It passes on the
process id of the queue runner, together with the file descriptor number of an open pipe. Closure of
the pipe signals the final completion of the sequence of processes that are passing messages
through the same SMTP connection.

41 The Exim command line (5)

-MCS
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option, and passes on the fact that the SMTP SIZE option should be used on
messages delivered down the existing connection.

-MCT
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option, and passes on the fact that the host to which Exim is connected supports
TLS encryption.

-MCt <IP address> <port> <cipher>
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option, and passes on the fact that the connection is being proxied by a parent
process for handling TLS encryption. The arguments give the local address and port being proxied,
and the TLS cipher.

-Mc <message id> <message id> ...

This option requests Exim to run a delivery attempt on each message in turn, but unlike the -M
option, it does check for retry hints, and respects any that are found. This option is not very useful
to external callers. It is provided mainly for internal use by Exim when it needs to re-invoke itself
in order to regain root privilege for a delivery (see chapter . However, -Mc can be useful when
testing, in order to run a delivery that respects retry times and other options such as hold_domains
that are overridden when -M is used. Such a delivery does not count as a queue run. If you want to
run a specific delivery as if in a queue run, you should use -q with a message id argument. A
distinction between queue run deliveries and other deliveries is made in one or two places.

-Mes <message id> <address>
This option requests Exim to change the sender address in the message to the given address, which
must be a fully qualified address or “<>” (“es” for “edit sender”). There must be exactly two
arguments. The first argument must be a message id, and the second one an email address.
However, if the message is active (in the middle of a delivery attempt), its status is not altered.
This option can be used only by an admin user.

-Mf <message id> <message id> ...
This option requests Exim to mark each listed message as “frozen”. This prevents any delivery
attempts taking place until the message is “thawed”, either manually or as a result of the auto_
thaw configuration option. However, if any of the messages are active (in the middle of a delivery
attempt), their status is not altered. This option can be used only by an admin user.

-Mg <message id> <message id> ...
This option requests Exim to give up trying to deliver the listed messages, including any that are
frozen. However, if any of the messages are active, their status is not altered. For non-bounce
messages, a delivery error message is sent to the sender, containing the text “cancelled by adminis-
trator”. Bounce messages are just discarded. This option can be used only by an admin user.

-Mmad <message id> <message id> ...
This option requests Exim to mark all the recipient addresses in the messages as already delivered
(“mad” for “mark all delivered”). However, if any message is active (in the middle of a delivery
attempt), its status is not altered. This option can be used only by an admin user.

-Mmd <message id> <address> <address> ...
This option requests Exim to mark the given addresses as already delivered (“md” for “mark
delivered”). The first argument must be a message id, and the remaining ones must be email
addresses. These are matched to recipient addresses in the message in a case-sensitive manner. If
the message is active (in the middle of a delivery attempt), its status is not altered. This option can
be used only by an admin user.

-Mrm <message id> <message id> ...
This option requests Exim to remove the given messages from the queue. No bounce messages are
sent; each message is simply forgotten. However, if any of the messages are active, their status is
not altered. This option can be used only by an admin user or by the user who originally caused
the message to be placed on the queue.

42 The Exim command line (5)

-Mset <message id>
This option is useful only in conjunction with -be (that is, when testing string expansions). Exim
loads the given message from its spool before doing the test expansions, thus setting message-
specific variables such as $message_size and the header variables. The $recipients variable is made
available. This feature is provided to make it easier to test expansions that make use of these
variables. However, this option can be used only by an admin user. See also -bem.

-Mt <message id> <message id> ...
This option requests Exim to “thaw” any of the listed messages that are “frozen”, so that delivery
attempts can resume. However, if any of the messages are active, their status is not altered. This
option can be used only by an admin user.

-Mvb <message id>
This option causes the contents of the message body (-D) spool file to be written to the standard
output. This option can be used only by an admin user.

-Mvc <message id>
This option causes a copy of the complete message (header lines plus body) to be written to the
standard output in RFC 2822 format. This option can be used only by an admin user.

-Mvh <message id>
This option causes the contents of the message headers (-H) spool file to be written to the standard
output. This option can be used only by an admin user.

-Mvl <message id>
This option causes the contents of the message log spool file to be written to the standard output.
This option can be used only by an admin user.

-m
This is apparently a synonym for -om that is accepted by Sendmail, so Exim treats it that way too.

-N
This is a debugging option that inhibits delivery of a message at the transport level. It implies -v.
Exim goes through many of the motions of delivery — it just doesn’t actually transport the mess-
age, but instead behaves as if it had successfully done so. However, it does not make any updates
to the retry database, and the log entries for deliveries are flagged with “*>” rather than “=>".

Because -N discards any message to which it applies, only root or the Exim user are allowed to use
it with -bd, -q, -R or -M. In other words, an ordinary user can use it only when supplying an
incoming message to which it will apply. Although transportation never fails when -N is set, an
address may be deferred because of a configuration problem on a transport, or a routing problem.
Once -N has been used for a delivery attempt, it sticks to the message, and applies to any subse-
quent delivery attempts that may happen for that message.

This option is interpreted by Sendmail to mean “no aliasing”. For normal modes of operation, it is
ignored by Exim. When combined with -bP it makes the output more terse (suppresses option
names, environment values and config pretty printing).

-0 <data>
This option is interpreted by Sendmail to mean set option. Itisignored by Exim.

-0A <file name>
This option is used by Sendmail in conjunction with -bi to specify an alternative alias file name.
Exim handles -bi differently; see the description above.

-0B <n>
This is a debugging option which limits the maximum number of messages that can be delivered
down one SMTP connection, overriding the value set in any smip transport. If <n> is omitted, the
limit is set to 1.

-odb
This option applies to all modes in which Exim accepts incoming messages, including the listen-
ing daemon. It requests “background” delivery of such messages, which means that the accepting

43 The Exim command line (5)

process automatically starts a delivery process for each message received, but does not wait for the
delivery processes to finish.

When all the messages have been received, the reception process exits, leaving the delivery pro-
cesses to finish in their own time. The standard output and error streams are closed at the start of
each delivery process. This is the default action if none of the -od options are present.

If one of the queueing options in the configuration file (queue_only or queue_only_file, for
example) is in effect, -odb overrides it if queue_only_override is set true, which is the default
setting. If queue_only_override is set false, -odb has no effect.

-odf
This option requests “foreground” (synchronous) delivery when Exim has accepted a locally-
generated message. (For the daemon it is exactly the same as -odb.) A delivery process is auto-
matically started to deliver the message, and Exim waits for it to complete before proceeding.

The original Exim reception process does not finish until the delivery process for the final message
has ended. The standard error stream is left open during deliveries.

However, like -odb, this option has no effect if queue_only_override is false and one of the
queueing options in the configuration file is in effect.

If there is a temporary delivery error during foreground delivery, the message is left on the queue
for later delivery, and the original reception process exits. See chapterfor a way of setting up a
restricted configuration that never queues messages.

-odi
This option is synonymous with -odf. It is provided for compatibility with Sendmail.

-odq
This option applies to all modes in which Exim accepts incoming messages, including the listen-
ing daemon. It specifies that the accepting process should not automatically start a delivery process
for each message received. Messages are placed on the queue, and remain there until a subsequent
queue runner process encounters them. There are several configuration options (such as queue_
only) that can be used to queue incoming messages under certain conditions. This option overrides
all of them and also -odgs. It always forces queueing.

-odgs
This option is a hybrid between -odb/-odi and -odq. However, like -odb and -odi, this option has
no effect if queue_only_override is false and one of the queueing options in the configuration file
is in effect.

When -odqgs does operate, a delivery process is started for each incoming message, in the back-
ground by default, but in the foreground if -odi is also present. The recipient addresses are routed,
and local deliveries are done in the normal way. However, if any SMTP deliveries are required,
they are not done at this time, so the message remains on the queue until a subsequent queue
runner process encounters it. Because routing was done, Exim knows which messages are waiting
for which hosts, and so a number of messages for the same host can be sent in a single SMTP
connection. The queue_smtp_domains configuration option has the same effect for specific
domains. See also the -qq option.

-oee
If an error is detected while a non-SMTP message is being received (for example, a malformed
address), the error is reported to the sender in a mail message.

Provided this error message is successfully sent, the Exim receiving process exits with a return
code of zero. If not, the return code is 2 if the problem is that the original message has no
recipients, or 1 for any other error. This is the default -oex option if Exim is called as rmail.

-oem
This is the same as -oee, except that Exim always exits with a non-zero return code, whether or not
the error message was successfully sent. This is the default -oex option, unless Exim is called as
rmail.

44 The Exim command line (5)

-oep
If an error is detected while a non-SMTP message is being received, the error is reported by
writing a message to the standard error file (stderr). The return code is 1 for all errors.

-oeq
This option is supported for compatibility with Sendmail, but has the same effect as -oep.

-0ew
This option is supported for compatibility with Sendmail, but has the same effect as -oem.

-oi
This option, which has the same effect as -i, specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. Otherwise, a single dot does terminate, though Exim
does no special processing for other lines that start with a dot. This option is set by default if Exim
is called as rmail. See also -ti.

-oitrue
This option is treated as synonymous with -oi.

-oMa <host address>
A number of options starting with -0M can be used to set values associated with remote hosts on
locally-submitted messages (that is, messages not received over TCP/IP). These options can be
used by any caller in conjunction with the -bh, -be, -bf, -bF, -bt, or -bv testing options. In other
circumstances, they are ignored unless the caller is trusted.

The -oMa option sets the sender host address. This may include a port number at the end, after a
full stop (period). For example:

exim -bs -oMa 10.9.8.7.1234

An alternative syntax is to enclose the IP address in square brackets, followed by a colon and the
port number:

exim -bs -oMa [10.9.8.7]:1234

The TP address is placed in the $sender_host_address variable, and the port, if present, in $sender_
host_port. If both -oMa and -bh are present on the command line, the sender host IP address is
taken from whichever one is last.

-oMaa <name>
See -oMa above for general remarks about the -oM options. The -oMaa option sets the value of
$sender_host_authenticated (the authenticator name). See chapter for a discussion of SMTP
authentication. This option can be used with -bh and -bs to set up an authenticated SMTP session
without actually using the SMTP AUTH command.

-oMai <string>
See -oMa above for general remarks about the -oM options. The -oMai option sets the value of
Sauthenticated_id (the id that was authenticated). This overrides the default value (the caller’s
login id, except with -bh, where there is no default) for messages from local sources. See chapter
for a discussion of authenticated ids.

-oMas <address>
See -oMa above for general remarks about the -oM options. The -oMas option sets the
authenticated sender value in $authenticated_sender. It overrides the sender address that is created
from the caller’s login id for messages from local sources, except when -bh is used, when there is
no default. For both -bh and -bs. an authenticated sender that is specified on a MAIL command
overrides this value. See Chapter for a discussion of authenticated senders.

-oMi <interface address>
See -oMa above for general remarks about the -oM options. The -oMi option sets the IP interface
address value. A port number may be included, using the same syntax as for -oMa. The interface
address is placed in $received_ip_address and the port number, if present, in $received_port.

45 The Exim command line (5)

-oMm <message reference>
See -oMa above for general remarks about the -oM options. The -oMm option sets the message
reference, e.g. message-id, and is logged during delivery. This is useful when some kind of audit
trail is required to tie messages together. The format of the message reference is checked and will
abort if the format is invalid. The option will only be accepted if exim is running in trusted mode,
not as any regular user.

The best example of a message reference is when Exim sends a bounce message. The message
reference is the message-id of the original message for which Exim is sending the bounce.

-oMr <protocol name>
See -oMa above for general remarks about the -oM options. The -oMr option sets the received
protocol value that is stored in $received_protocol. However, it does not apply (and is ignored)
when -bh or -bs is used. For -bh, the protocol is forced to _one of the standard SMTP protocol
names (see the description of $received_protocol in section . For -bs, the protocol is always
“local-" followed by one of those same names. For -bS (batched SMTP) however, the protocol can
be set by -oMr. Repeated use of this option is not supported.

-oMs <host name>
See -oMa above for general remarks about the -oM options. The -oMs option sets the sender host
name in $sender_host_name. When this option is present, Exim does not attempt to look up a host
name from an IP address; it uses the name it is given.

-oMt <ident string>
See -oMa above for general remarks about the -oM options. The -oMt option sets the sender ident
value in $sender_ident. The default setting for local callers is the login id of the calling process,
except when -bh is used, when there is no default.

-om
In Sendmail, this option means “me too”, indicating that the sender of a message should receive a
copy of the message if the sender appears in an alias expansion. Exim always does this, so the
option does nothing.

-00
This option is ignored. In Sendmail it specifies “old style headers”, whatever that means.

-oP <path>
This option is useful only in conjunction with -bd or -q with a time value. The option specifies the
file to which the process id of the daemon is written. When -0X is used with -bd, or when -q with
a time is used without -bd, this is the only way of causing Exim to write a pid file, because in
those cases, the normal pid file is not used.

-or <time>
This option sets a timeout value for incoming non-SMTP messages. If it is not set, Exim will wait
forever for the standard input. The value can also be set by the receive_timeout option. The
format used for specifying times is described in section

-0s <time>
This option sets a timeout value for incoming SMTP messages. The timeout applies to each SMTP
command and block of data. The value can also be set by the smtp_receive_timeout option; it
defaults to 5 minutes. The format used for specifying times is described in section[6.16

-0V
This option has exactly the same effect as -v.

-0X <number or string>
This option is relevant only when the -bd (start listening daemon) option is also given. It controls
which ports and interfaces the daemon uses. Details of the syntax, and how it interacts with
configuration file options, are given in chapter When -0X is used to start a daemon, no pid file
is written unless -oP is also present to specify a pid file name.

46 The Exim command line (5)

-pd
This option applies when an embedded Perl interpreter is linked with Exim (see chapter [12)). It
overrides the setting of the perl_at_start option, forcing the starting of the interpreter to be
delayed until it is needed.

-ps
This option applies when an embedded Perl interpreter is linked with Exim (see chapter [12)). It
overrides the setting of the perl_at_start option, forcing the starting of the interpreter to occur as
soon as Exim is started.

-p<rval>:<sval>
For compatibility with Sendmail, this option is equivalent to

—oMr <rval> —oMs <sval>

It sets the incoming protocol and host name (for trusted callers). The host name and its colon can
be omitted when only the protocol is to be set. Note the Exim already has two private options, -pd
and -ps, that refer to embedded Perl. It is therefore impossible to set a protocol value of d or s
using this option (but that does not seem a real limitation). Repeated use of this option is not
supported.

This option is normally restricted to admin users. However, there is a configuration option called
prod_requires_admin which can be set false to relax this restriction (and also the same require-
ment for the -M, -R, and -S options).

If other commandline options do not specify an action, the -q option starts one queue runner
process. This scans the queue of waiting messages, and runs a delivery process for each one in
turn. It waits for each delivery process to finish before starting the next one. A delivery process
may not actually do any deliveries if the retry times for the addresses have not been reached. Use
-qf (see below) if you want to override this.

If the delivery process spawns other processes to deliver other messages down passed SMTP
connections, the queue runner waits for these to finish before proceeding.

When all the queued messages have been considered, the original queue runner process terminates.
In other words, a single pass is made over the waiting mail, one message at a time. Use -q with a
time (see below) if you want this to be repeated periodically.

Exim processes the waiting messages in an unpredictable order. It isn’t very random, but it is
likely to be different each time, which is all that matters. If one particular message screws up a
remote MTA, other messages to the same MTA have a chance of getting through if they get tried
first.

It is possible to cause the messages to be processed in lexical message id order, which is essen-
tially the order in which they arrived, by setting the queue_run_in_order option, but this is not
recommended for normal use.

-q<qflags>
The -q option may be followed by one or more flag letters that change its behaviour. They are all
optional, but if more than one is present, they must appear in the correct order. Each flag is
described in a separate item below.

-qq...
An option starting with -qq requests a two-stage queue run. In the first stage, the queue is scanned

as if the queue_smtp_domains option matched every domain. Addresses are routed, local deliver-
ies happen, but no remote transports are run.

The hints database that remembers which messages are waiting for specific hosts is updated, as if
delivery to those hosts had been deferred. After this is complete, a second, normal queue scan
happens, with routing and delivery taking place as normal. Messages that are routed to the same
host should mostly be delivered down a single SMTP connection because of the hints that were set
up during the first queue scan. This option may be useful for hosts that are connected to the
Internet intermittently.

47 The Exim command line (5)

-q[q]i...
If the i flag is present, the queue runner runs delivery processes only for those messages that

haven’t previously been tried. (i stands for “initial delivery”.) This can be helpful if you are putting
messages on the queue using -odq and want a queue runner just to process the new messages.

-q[qlfi]f...
If one f flag is present, a delivery attempt is forced for each non-frozen message, whereas without f
only those non-frozen addresses that have passed their retry times are tried.

-q[ql[ilff...
If ff is present, a delivery attempt is forced for every message, whether frozen or not.

-q[qI[] TN
The I (the letter “ell”) flag specifies that only local deliveries are to be done. If a message requires
any remote deliveries, it remains on the queue for later delivery.

-q[qIITTIN[G <name>[/<time>]]]
If the G flag and a name is present, the queue runner operates on the queue with the given name
rather than the default queue. The name should not contain a / character. For a periodic queue run
(see below) append to the name a slash and a time value.

If other commandline options specify an action, a -gG<name> option will specify a queue to
operate on. For example:

exim -bp -gGquarantine
mailg —gGquarantine
exim —-gGoffpeak —-Rf @special.domain.example

-q<gflags> <start id> <end id>
When scanning the queue, Exim can be made to skip over messages whose ids are lexically less
than a given value by following the -q option with a starting message id. For example:

exim —-g 0t5C6£-0000c8-00

Messages that arrived earlier than 0t 5C6£-0000c8-00 are not inspected. If a second message
id is given, messages whose ids are lexically greater than it are also skipped. If the same id is given
twice, for example,

exim —-g 0t5C6£-0000c8-00 0t5C6£-0000c8-00

just one delivery process is started, for that message. This differs from -M in that retry data is
respected, and it also differs from -Mc in that it counts as a delivery from a queue run. Note that
the selection mechanism does not affect the order in which the messages are scanned. There are
also other ways of selecting specific sets of messages for delivery in a queue run — see -R and -S.

-q<gflags><time>
When a time value is present, the -q option causes Exim to run as a daemon, starting a queue
runner process at intervals specified by the given time value (whose format is described in section
6.16). This form of the -q option is commonly combined with the -bd option, in which case a
single daemon process handles both functions. A common way of starting up a combined daemon
at system boot time is to use a command such as

/usr/exim/bin/exim -bd -g30m

Such a daemon listens for incoming SMTP calls, and also starts a queue runner process every 30
minutes.

When a daemon is started by -q with a time value, but without -bd, no pid file is written unless one
is explicitly requested by the -oP option.

-qR<rsflags> <string>
This option is synonymous with -R. It is provided for Sendmail compatibility.

-qS<rsflags> <string>
This option is synonymous with -S.

48 The Exim command line (5)

-R<rsflags> <string>

The <rsflags> may be empty, in which case the white space before the string is optional, unless the
string is f, ff, r, rf, or rff, which are the possible values for <rsflags>. White space is required if
<rsflags> is not empty.

This option is similar to -q with no time value, that is, it causes Exim to perform a single queue
run, except that, when scanning the messages on the queue, Exim processes only those that have at
least one undelivered recipient address containing the given string, which is checked in a case-
independent way. If the <rsflags> start with r, <string> is interpreted as a regular expression;
otherwise it is a literal string.

If you want to do periodic queue runs for messages with specific recipients, you can combine -R
with -q and a time value. For example:

exim -g25m —-R @special.domain.example

This example does a queue run for messages with recipients in the given domain every 25 minutes.
Any additional flags that are specified with -q are applied to each queue run.

Once a message is selected for delivery by this mechanism, all its addresses are processed. For the
first selected message, Exim overrides any retry information and forces a delivery attempt for each
undelivered address. This means that if delivery of any address in the first message is successful,
any existing retry information is deleted, and so delivery attempts for that address in subsequently
selected messages (which are processed without forcing) will run. However, if delivery of any
address does not succeed, the retry information is updated, and in subsequently selected messages,
the failing address will be skipped.

If the <rsflags> contain f or ff, the delivery forcing applies to all selected messages, not just the
first; frozen messages are included when ffis present.

The -R option makes it straightforward to initiate delivery of all messages to a given domain after
a host has been down for some time. When the SMTP command ETRN is accepted by its ACL
(see chapter , its default effect is to run Exim with the -R option, but it can be configured to run
an arbitrary command instead.

This is a documented (for Sendmail) obsolete alternative name for -f.

-S<rsflags> <string>

This option acts like -R except that it checks the string against each message’s sender instead of
against the recipients. If -R is also set, both conditions must be met for a message to be selected. If
either of the options has f or ff in its flags, the associated action is taken.

-Tqt <times>

This is an option that is exclusively for use by the Exim testing suite. It is not recognized when
Exim is run normally. It allows for the setting up of explicit “queue times” so that various
warning/retry features can be tested.

When Exim is receiving a locally-generated, non-SMTP message on its standard input, the -t
option causes the recipients of the message to be obtained from the 7o:, Cc:, and Bcc: header lines
in the message instead of from the command arguments. The addresses are extracted before any
rewriting takes place and the Bcc: header line, if present, is then removed.

If the command has any arguments, they specify addresses to which the message is not to be
delivered. That is, the argument addresses are removed from the recipients list obtained from the
headers. This is compatible with Smail 3 and in accordance with the documented behaviour of
several versions of Sendmail, as described in man pages on a number of operating systems (e.g.
Solaris 8, IRIX 6.5, HP-UX 11). However, some versions of Sendmail add argument addresses to
those obtained from the headers, and the O’Reilly Sendmail book documents it that way. Exim can
be made to add argument addresses instead of subtracting them by setting the option extract_
addresses_remove_arguments false.

49 The Exim command line (5)

If there are any Resent- header lines in the message, Exim extracts recipients from all Resent-To:,
Resent-Cc:, and Resent-Bcc: header lines instead of from 7o:, Cc:, and Bcc:. This is for compati-
bility with Sendmail and other MTAs. (Prior to release 4.20, Exim gave an error if -t was used in
conjunction with Resent- header lines.)

RFC 2822 talks about different sets of Resent- header lines (for when a message is resent several
times). The RFC also specifies that they should be added at the front of the message, and separated
by Received: lines. It is not at all clear how -t should operate in the present of multiple sets, nor
indeed exactly what constitutes a “set”. In practice, it seems that MUAs do not follow the RFC.
The Resent- lines are often added at the end of the header, and if a message is resent more than
once, it is common for the original set of Resent- headers to be renamed as X-Resent- when a new
set is added. This removes any possible ambiguity.

-ti
This option is exactly equivalent to -t -i. It is provided for compatibility with Sendmail.

-tls-on-connect
This option is available when Exim is compiled with TLS support. It forces all incoming SMTP
connections to behave as if the incoming port is listed in the tls_on_connect_ports option. See
section and chapterfor further details.

-U
Sendmail uses this option for “initial message submission”, and its documentation states that in
future releases, it may complain about syntactically invalid messages rather than fixing them when
this flag is not set. Exim ignores this option.

This option causes Exim to write information to the standard error stream, describing what it is
doing. In particular, it shows the log lines for receiving and delivering a message, and if an SMTP
connection is made, the SMTP dialogue is shown. Some of the log lines shown may not actually
be written to the log if the setting of log_selector discards them. Any relevant selectors are shown
with each log line. If none are shown, the logging is unconditional.

-X
AIX uses -x for a private purpose (“mail from a local mail program has National Language
Support extended characters in the body of the mail item”). It sets -x when calling the MTA from
its mail command. Exim ignores this option.

-X <logfile>
This option is interpreted by Sendmail to cause debug information to be sent to the named file. It is
ignored by Exim.

-z <log-line>
This option writes its argument to Exim’s logfile. Use is restricted to administrators; the intent is
for operational notes. Quotes should be used to maintain a multi-word item as a single argument,
under most shells.

50 The Exim command line (5)

6. The Exim run time configuration file

Exim uses a single run time configuration file that is read whenever an Exim binary is executed. Note
that in normal operation, this happens frequently, because Exim is designed to operate in a distributed
manner, without central control.

If a syntax error is detected while reading the configuration file, Exim writes a message on the
standard error, and exits with a non-zero return code. The message is also written to the panic log.
Note: Only simple syntax errors can be detected at this time. The values of any expanded options are
not checked until the expansion happens, even when the expansion does not actually alter the string.

The name of the configuration file is compiled into the binary for security reasons, and is specified
by the CONFIGURE_FILE compilation option. In most configurations, this specifies a single file.
However, it is permitted to give a colon-separated list of file names, in which case Exim uses the first
existing file in the list.

The run time configuration file must be owned by root or by the user that is specified at compile time
by the CONFIGURE_OWNER option (if set). The configuration file must not be world-writeable,
or group-writeable unless its group is the root group or the one specified at compile time by the
CONFIGURE_GROUP option.

Warning: In a conventional configuration, where the Exim binary is setuid to root, anybody who is
able to edit the run time configuration file has an easy way to run commands as root. If you specify a
user or group in the CONFIGURE_OWNER or CONFIGURE_GROUP options, then that user and/or
any users who are members of that group will trivially be able to obtain root privileges.

Up to Exim version 4.72, the run time configuration file was also permitted to be writeable by the
Exim user and/or group. That has been changed in Exim 4.73 since it offered a simple privilege
escalation for any attacker who managed to compromise the Exim user account.

A default configuration file, which will work correctly in simple situations, is provided in the file
src/configure.default. If CONFIGURE_FILE defines just one file name, the installation process copies
the default configuration to a new file of that name if it did not previously exist. If CONFIGURE_
FILE is a list, no default is automatically installed. Chapter [/|is a “walk-through” discussion of the
default configuration.

6.1 Using a different configuration file

A one-off alternate configuration can be specified by the -C command line option, which may specify
a single file or a list of files. However, when -C is used, Exim gives up its root privilege, unless called
by root (or unless the argument for -C is identical to the built-in value from CONFIGURE_FILE), or
is listed in the TRUSTED_CONFIG_LIST file and the caller is the Exim user or the user specified in
the CONFIGURE_OWNER setting. -C is useful mainly for checking the syntax of configuration files
before installing them. No owner or group checks are done on a configuration file specified by -C, if
root privilege has been dropped.

Even the Exim user is not trusted to specify an arbitrary configuration file with the -C option to be
used with root privileges, unless that file is listed in the TRUSTED_CONFIG_LIST file. This locks
out the possibility of testing a configuration using -C right through message reception and delivery,
even if the caller is root. The reception works, but by that time, Exim is running as the Exim user, so
when it re-execs to regain privilege for the delivery, the use of -C causes privilege to be lost. However,
root can test reception and delivery using two separate commands (one to put a message on the queue,
using -odq, and another to do the delivery, using -M).

If ALT_CONFIG_PREFIX is defined in Local/Makefile, it specifies a prefix string with which any file
named in a -C command line option must start. In addition, the file name must not contain the
sequence “/ . ./”. There is no default setting for ALT_CONFIG_PREFIX; when it is unset, any file
name can be used with -C.

One-off changes to a configuration can be specified by the -D command line option, which defines
and overrides values for macros used inside the configuration file. However, like -C, the use of this
option by a non-privileged user causes Exim to discard its root privilege. If DISABLE_D_OPTION is

51 The runtime configuration file (6)

defined in Local/Makefile, the use of -D is completely disabled, and its use causes an immediate error
exit.

The WHITELIST_D_MACROS option in Local/Makefile permits the binary builder to declare certain
macro names trusted, such that root privilege will not necessarily be discarded. WHITELIST_D_
MACROS defines a colon-separated list of macros which are considered safe and, if -D only supplies
macros from this list, and the values are acceptable, then Exim will not give up root privilege if the
caller is root, the Exim run-time user, or the CONFIGURE_OWNER, if set. This is a transition
mechanism and is expected to be removed in the future. Acceptable values for the macros satisfy the
regexp: * [A-Za-z0-9_/.-1*$

Some sites may wish to use the same Exim binary on different machines that share a file system, but
to use different configuration files on each machine. If CONFIGURE_FILE_USE_NODE is defined
in Local/Makefile, Exim first looks for a file whose name is the configuration file name followed by a
dot and the machine’s node name, as obtained from the uname() function. If this file does not exist,
the standard name is tried. This processing occurs for each file name in the list given by
CONFIGURE_FILE or -C.

In some esoteric situations different versions of Exim may be run under different effective uids and
the CONFIGURE_FILE_USE_EUID is defined to help with this. See the comments in sre/EDITME
for details.

6.2 Configuration file format

Exim’s configuration file is divided into a number of different parts. General option settings must
always appear at the start of the file. The other parts are all optional, and may appear in any order.
Each part other than the first is introduced by the word “begin” followed by at least one literal space,
and the name of the part. The optional parts are:

* ACL: Access control lists for controlling incoming SMTP mail (see chapter .

* authenticators: Configuration settings for the authenticator drivers. These are concerned with the
SMTP AUTH command (see chapter.

* routers: Configuration settings for the router drivers. Routers process addresses and determine how
the message is to be delivered (see chapters .

* transports: Configuration settings for the transport drivers. Transports define mechanisms for copy-
ing messages to destinations (see chapters .

* retry: Retry rules, for use when a message cannot be delivered immediately. If there is no retry
section, or if it is empty (that is, no retry rules are defined), Exim will not retry deliveries. In this
situation, temporary errors are treated the same as permanent errors. Retry rules are discussed in

chapter

* rewrite: Global address rewriting rules, for use when a message arrives and when new addresses
are generated during delivery. Rewriting is discussed in chapter

* local_scan: Private options for the local_scan() function. If you want to use this feature, you must
set

LOCAL_SCAN_HAS_OPTIONS=yes
in Local/Makefile before building Exim. Details of the local_scan() facility are given in chapter
Leading and trailing white space in configuration lines is always ignored.

Blank lines in the file, and lines starting with a # character (ignoring leading white space) are treated
as comments and are ignored. Note: A # character other than at the beginning of a line is not treated
specially, and does not introduce a comment.

Any non-comment line can be continued by ending it with a backslash. Note that the general rule for
white space means that trailing white space after the backslash and leading white space at the start of
continuation lines is ignored. Comment lines beginning with # (but not empty lines) may appear in
the middle of a sequence of continuation lines.

52 The runtime configuration file (6)

A convenient way to create a configuration file is to start from the default, which is supplied in
src/configure.default, and add, delete, or change settings as required.

The ACLs, retry rules, and rewriting rules have their own syntax which is described in chapters
and respectively. The other parts of the configuration file have some syntactic items in
common, and these are described below, from section onwards. Before that, the inclusion,
macro, and conditional facilities are described.

6.3 File inclusions in the configuration file
You can include other files inside Exim’s run time configuration file by using this syntax:

.include <file name>
.include_if_exists <file name>

on a line by itself. Double quotes round the file name are optional. If you use the first form, a
configuration error occurs if the file does not exist; the second form does nothing for non-existent
files. The first form allows a relative name. It is resolved relative to the directory of the including file.
For the second form an absolute file name is required.

Includes may be nested to any depth, but remember that Exim reads its configuration file often, so it is
a good idea to keep them to a minimum. If you change the contents of an included file, you must HUP
the daemon, because an included file is read only when the configuration itself is read.

The processing of inclusions happens early, at a physical line level, so, like comment lines, an
inclusion can be used in the middle of an option setting, for example:

hosts_lookup = a.b.c \
.include /some/file

Include processing happens after macro processing (see below). Its effect is to process the lines of the
included file as if they occurred inline where the inclusion appears.

6.4 Macros in the configuration file

If a line in the main part of the configuration (that is, before the first “begin” line) begins with an
upper case letter, it is taken as a macro definition, and must be of the form

<name> = <rest of line>

The name must consist of letters, digits, and underscores, and need not all be in upper case, though
that is recommended. The rest of the line, including any continuations, is the replacement text, and
has leading and trailing white space removed. Quotes are not removed. The replacement text can
never end with a backslash character, but this doesn’t seem to be a serious limitation.

Macros may also be defined between router, transport, authenticator, or ACL definitions. They may
not, however, be defined within an individual driver or ACL, or in the local_scan, retry, or rewrite
sections of the configuration.

6.5 Macro substitution

Once a macro is defined, all subsequent lines in the file (and any included files) are scanned for the
macro name; if there are several macros, the line is scanned for each in turn, in the order in which the
macros are defined. The replacement text is not re-scanned for the current macro, though it is scanned
for subsequently defined macros. For this reason, a macro name may not contain the name of a
previously defined macro as a substring. You could, for example, define

ABCD_XYZ = <something>
ABCD = <something else>

but putting the definitions in the opposite order would provoke a configuration error. Macro expansion
is applied to individual physical lines from the file, before checking for line continuation or file
inclusion (see above). If a line consists solely of a macro name, and the expansion of the macro is

53 The runtime configuration file (6)

empty, the line is ignored. A macro at the start of a line may turn the line into a comment line or a
.include line.

6.6 Redefining macros

Once defined, the value of a macro can be redefined later in the configuration (or in an included file).
Redefinition is specified by using == instead of =. For example:

MAC = 1initial value

MAC == updated value

Redefinition does not alter the order in which the macros are applied to the subsequent lines of the
configuration file. It is still the same order in which the macros were originally defined. All that
changes is the macro’s value. Redefinition makes it possible to accumulate values. For example:

MAC = initial value

MAC == MAC and something added

This can be helpful in situations where the configuration file is built from a number of other files.

6.7 Overriding macro values

The values set for macros in the configuration file can be overridden by the -D command line option,
but Exim gives up its root privilege when -D is used, unless called by root or the Exim user. A
definition on the command line using the -D option causes all definitions and redefinitions within the
file to be ignored.

6.8 Example of macro usage

As an example of macro usage, consider a configuration where aliases are looked up in a MySQL
database. It helps to keep the file less cluttered if long strings such as SQL statements are defined
separately as macros, for example:

ALIAS_QUERY = select mailbox from user where \
login='${quote_mysqgl:S$local_part}';

This can then be used in a redirect router setting like this:
data = ${lookup mysqgl{ALIAS_QUERY}}

In earlier versions of Exim macros were sometimes used for domain, host, or address lists. In Exim 4
these are handled better by named lists — see section

6.9 Builtin macros

Exim defines some macros depending on facilities available, which may differ due to build-time
definitions and from one release to another. All of these macros start with an underscore. They can be
used to conditionally include parts of a configuration (see below).

The following classes of macros are defined:

HAVE* build-time defines
_DRIVER_ROUTER_* router drivers
_DRIVER_TRANSPORT_* transport drivers
_DRIVER_AUTHENTICATOR_* authenticator drivers
_OPT_MAIN_* main config options
_OPT_ROUTERS_* generic router options
_OPT_TRANSPORTS_* generic transport options
_OPT_AUTHENTICATORS_* generic authenticator options
_OPT_ROUTER_*_* private router options

54 The runtime configuration file (6)

_OPT_TRANSPORT_*_* private transport options
_OPT_AUTHENTICATOR_*_* private authenticator options

Use an “exim -bP macros” command to get the list of macros.

6.10 Conditional skips in the configuration file

You can use the directives .ifdef, .ifndef, .elifdef, .elifndef, .else,and .endif to
dynamically include or exclude portions of the configuration file. The processing happens whenever
the file is read (that is, when an Exim binary starts to run).

The implementation is very simple. Instances of the first four directives must be followed by text that
includes the names of one or macros. The condition that is tested is whether or not any macro
substitution has taken place in the line. Thus:

.ifdef AAA
message_size_limit = 50M
.else

message_size_limit = 100M
.endif

sets a message size limit of S0M if the macro AAA is defined (or A or AA), and 100M otherwise. If
there is more than one macro named on the line, the condition is true if any of them are defined. That
is, it is an “or” condition. To obtain an “and” condition, you need to use nested . ifdefs.

Although you can use a macro expansion to generate one of these directives, it is not very useful,
because the condition “there was a macro substitution in this line” will always be true.

Text following .else and .endif is ignored, and can be used as comment to clarify complicated
nestings.

6.11 Common option syntax

For the main set of options, driver options, and local_scan() options, each setting is on a line by itself,
and starts with a name consisting of lower-case letters and underscores. Many options require a data
value, and in these cases the name must be followed by an equals sign (with optional white space) and
then the value. For example:

qualify domain = mydomain.example.com

Some option settings may contain sensitive data, for example, passwords for accessing databases. To
stop non-admin users from using the -bP command line option to read these values, you can precede
the option settings with the word “hide”. For example:

hide mysgl_servers = localhost/users/admin/secret-password
For non-admin users, such options are displayed like this:
mysqgl_servers = <value not displayable>
If “hide” is used on a driver option, it hides the value of that option on all instances of the same driver.

The following sections describe the syntax used for the different data types that are found in option
settings.

6.12 Boolean options

Options whose type is given as boolean are on/off switches. There are two different ways of specify-
ing such options: with and without a data value. If the option name is specified on its own without
data, the switch is turned on; if it is preceded by “no_" or “not_" the switch is turned off. However,
boolean options may be followed by an equals sign and one of the words “true”, “false”, “yes”, or
“no”, as an alternative syntax. For example, the following two settings have exactly the same effect:

queue_only
queue_only = true

55 The runtime configuration file (6)

The following two lines also have the same (opposite) effect:

no_gueue_only
queue_only = false

You can use whichever syntax you prefer.

6.13 Integer values

If an option’s type is given as “integer”, the value can be given in decimal, hexadecimal, or octal. If it
starts with a digit greater than zero, a decimal number is assumed. Otherwise, it is treated as an octal
number unless it starts with the characters “Ox”, in which case the remainder is interpreted as a
hexadecimal number.

If an integer value is followed by the letter K, it is multiplied by 1024; if it is followed by the letter M,
it is multiplied by 1024x1024; if by the letter G, 1024x1024x1024. When the values of integer option
settings are output, values which are an exact multiple of 1024 or 1024x1024 are sometimes, but not
always, printed using the letters K and M. The printing style is independent of the actual input format
that was used.

6.14 Octal integer values

If an option’s type is given as “octal integer”, its value is always interpreted as an octal number,
whether or not it starts with the digit zero. Such options are always output in octal.

6.15 Fixed point numbers

If an option’s type is given as “fixed-point”, its value must be a decimal integer, optionally followed
by a decimal point and up to three further digits.

6.16 Time intervals

A time interval is specified as a sequence of numbers, each followed by one of the following letters,
with no intervening white space:

S seconds
m minutes
h hours

d days

w weeks

For example, “3h50m” specifies 3 hours and 50 minutes. The values of time intervals are output in the
same format. Exim does not restrict the values; it is perfectly acceptable, for example, to specify
“90m” instead of “1h30m”.

6.17 String values

If an option’s type is specified as “string”, the value can be specified with or without double-quotes. If
it does not start with a double-quote, the value consists of the remainder of the line plus any continu-
ation lines, starting at the first character after any leading white space, with trailing white space
removed, and with no interpretation of the characters in the string. Because Exim removes comment
lines (those beginning with #) at an early stage, they can appear in the middle of a multi-line string.
The following two settings are therefore equivalent:

trusted_users = uucp:mail

trusted_users = uucp:\
This comment line is ignored
mail

If a string does start with a double-quote, it must end with a closing double-quote, and any backslash
characters other than those used for line continuation are interpreted as escape characters, as follows:

56 The runtime configuration file (6)

\\ single backslash

\n newline

\r carriage return

\t tab

\<octal digits> up to 3 octal digits specify one character
\x<hex digits> up to 2 hexadecimal digits specify one character

If a backslash is followed by some other character, including a double-quote character, that character
replaces the pair.

Quoting is necessary only if you want to make use of the backslash escapes to insert special charac-
ters, or if you need to specify a value with leading or trailing spaces. These cases are rare, so quoting
is almost never needed in current versions of Exim. In versions of Exim before 3.14, quoting was
required in order to continue lines, so you may come across older configuration files and examples
that apparently quote unnecessarily.

6.18 Expanded strings

Some strings in the configuration file are subjected to string expansion, by which means various parts
of the string may be changed according to the circumstances (see chapter . The input syntax for
such strings is as just described; in particular, the handling of backslashes in quoted strings is done as
part of the input process, before expansion takes place. However, backslash is also an escape charac-
ter for the expander, so any backslashes that are required for that reason must be doubled if they are
within a quoted configuration string.

6.19 User and group names

User and group names are specified as strings, using the syntax described above, but the strings are
interpreted specially. A user or group name must either consist entirely of digits, or be a name that
can be looked up using the getpwnam() or getgrnam() function, as appropriate.

6.20 List construction

The data for some configuration options is a list of items, with colon as the default separator. Many of
these options are shown with type “string list” in the descriptions later in this document. Others are
listed as “domain list”, “host list”, “address list”, or “local part list”. Syntactically, they are all the
same; however, those other than “string list” are subject to particular kinds of interpretation, as

described in chapter

In all these cases, the entire list is treated as a single string as far as the input syntax is concerned. The
trusted_users setting in section @ above is an example. If a colon is actually needed in an item in a
list, it must be entered as two colons. Leading and trailing white space on each item in a list is
ignored. This makes it possible to include items that start with a colon, and in particular, certain forms
of IPv6 address. For example, the list

local_interfaces = 127.0.0.1 : ::::1
contains two IP addresses, the IPv4 address 127.0.0.1 and the IPv6 address ::1.

Note: Although leading and trailing white space is ignored in individual list items, it is not ignored
when parsing the list. The space after the first colon in the example above is necessary. If it were not
there, the list would be interpreted as the two items 127.0.0.1:: and 1.

6.21 Changing list separators

Doubling colons in IPv6 addresses is an unwelcome chore, so a mechanism was introduced to allow
the separator character to be changed. If a list begins with a left angle bracket, followed by any
punctuation character, that character is used instead of colon as the list separator. For example, the list
above can be rewritten to use a semicolon separator like this:

local_interfaces = <; 127.0.0.1 ; ::1

57 The runtime configuration file (6)

This facility applies to all lists, with the exception of the list in log_file_path. It is recommended that
the use of non-colon separators be confined to circumstances where they really are needed.

It is also possible to use newline and other control characters (those with code values less than 32,
plus DEL) as separators in lists. Such separators must be provided literally at the time the list is
processed. For options that are string-expanded, you can write the separator using a normal escape
sequence. This will be processed by the expander before the string is interpreted as a list. For
example, if a newline-separated list of domains is generated by a lookup, you can process it directly
by a line such as this:

domains = <\n ${lookup mysqgl{..... }}

This avoids having to change the list separator in such data. You are unlikely to want to use a control
character as a separator in an option that is not expanded, because the value is literal text. However, it
can be done by giving the value in quotes. For example:

local interfaces = "<\n 127.0.0.1 \n ::1"

Unlike printing character separators, which can be included in list items by doubling, it is not possible
to include a control character as data when it is set as the separator. Two such characters in succession
are interpreted as enclosing an empty list item.

6.22 Empty items in lists

An empty item at the end of a list is always ignored. In other words, trailing separator characters are
ignored. Thus, the list in

senders = user@domain

contains only a single item. If you want to include an empty string as one item in a list, it must not be
the last item. For example, this list contains three items, the second of which is empty:

senders = userl@domain : : user2@domain

Note: There must be white space between the two colons, as otherwise they are interpreted as
representing a single colon data character (and the list would then contain just one item). If you want
to specify a list that contains just one, empty item, you can do it as in this example:

senders =

In this case, the first item is empty, and the second is discarded because it is at the end of the list.

6.23 Format of driver configurations

There are separate parts in the configuration for defining routers, transports, and authenticators. In
each part, you are defining a number of driver instances, each with its own set of options. Each driver
instance is defined by a sequence of lines like this:

<instance name>:
<option>

<option>
In the following example, the instance name is localuser, and it is followed by three options settings:

localuser:
driver = accept
check_local_user
transport = local_delivery

For each driver instance, you specify which Exim code module it uses — by the setting of the driver
option — and (optionally) some configuration settings. For example, in the case of transports, if you
want a transport to deliver with SMTP you would use the smfp driver; if you want to deliver to a local
file you would use the appendfile driver. Each of the drivers is described in detail in its own separate
chapter later in this manual.

58 The runtime configuration file (6)

You can have several routers, transports, or authenticators that are based on the same underlying
driver (each must have a different instance name).

The order in which routers are defined is important, because addresses are passed to individual routers
one by one, in order. The order in which transports are defined does not matter at all. The order in
which authenticators are defined is used only when Exim, as a client, is searching them to find one
that matches an authentication mechanism offered by the server.

Within a driver instance definition, there are two kinds of option: generic and private. The generic
options are those that apply to all drivers of the same type (that is, all routers, all transports or all
authenticators). The driver option is a generic option that must appear in every definition. The private
options are special for each driver, and none need appear, because they all have default values.

The options may appear in any order, except that the driver option must precede any private options,
since these depend on the particular driver. For this reason, it is recommended that driver always be
the first option.

Driver instance names, which are used for reference in log entries and elsewhere, can be any sequence
of letters, digits, and underscores (starting with a letter) and must be unique among drivers of the
same type. A router and a transport (for example) can each have the same name, but no two router
instances can have the same name. The name of a driver instance should not be confused with the
name of the underlying driver module. For example, the configuration lines:

remote_smtp:
driver = smtp

create an instance of the smip transport driver whose name is remote_smitp. The same driver code can
be used more than once, with different instance names and different option settings each time. A
second instance of the smtp transport, with different options, might be defined thus:

special_smtp:

driver = smtp
port = 1234
command_timeout = 10s

The names remote_smtp and special_smtp would be used to reference these transport instances from
routers, and these names would appear in log lines.

Comment lines may be present in the middle of driver specifications. The full list of option settings

for any particular driver instance, including all the defaulted values, can be extracted by making use
of the -bP command line option.

59 The runtime configuration file (6)

7. The default configuration file

The default configuration file supplied with Exim as src/configure.default is sufficient for a host with
simple mail requirements. As an introduction to the way Exim is configured, this chapter “walks
through” the default configuration, giving brief explanations of the settings. Detailed descriptions of
the options are given in subsequent chapters. The default configuration file itself contains extensive
comments about ways you might want to modify the initial settings. However, note that there are
many options that are not mentioned at all in the default configuration.

7.1 Main configuration settings

The main (global) configuration option settings must always come first in the file. The first thing
you’ll see in the file, after some initial comments, is the line

primary_hostname =

This is a commented-out setting of the primary_hostname option. Exim needs to know the official,
fully qualified name of your host, and this is where you can specify it. However, in most cases you do
not need to set this option. When it is unset, Exim uses the uname() system function to obtain the host
name.

The first three non-comment configuration lines are as follows:

domainlist local_domains = a
domainlist relay_to_domains
hostlist relay_from_hosts = 127.0.0.1

These are not, in fact, option settings. They are definitions of two named domain lists and one named
host list. Exim allows you to give names to lists of domains, hosts, and email addresses, in order to
make it easier to manage the configuration file (see section |I 0.5).

The first line defines a domain list called local_domains; this is used later in the configuration to
identify domains that are to be delivered on the local host.

There is just one item in this list, the string “@”. This is a special form of entry which means “the
name of the local host”. Thus, if the local host is called a.host.example, mail to
any.user@a.host.example is expected to be delivered locally. Because the local host’s name is refer-
enced indirectly, the same configuration file can be used on different hosts.

The second line defines a domain list called relay_to_domains, but the list itself is empty. Later in the
configuration we will come to the part that controls mail relaying through the local host; it allows
relaying to any domains in this list. By default, therefore, no relaying on the basis of a mail domain is
permitted.

The third line defines a host list called relay_from_hosts. This list is used later in the configuration to
permit relaying from any host or IP address that matches the list. The default contains just the IP
address of the IPv4 loopback interface, which means that processes on the local host are able to
submit mail for relaying by sending it over TCP/IP to that interface. No other hosts are permitted to
submit messages for relaying.

Just to be sure there’s no misunderstanding: at this point in the configuration we aren’t actually setting
up any controls. We are just defining some domains and hosts that will be used in the controls that are
specified later.

The next two configuration lines are genuine option settings:

acl_smtp_rcpt
acl_smtp_data

acl_check_rcpt
acl_check_data

These options specify Access Control Lists (ACLs) that are to be used during an incoming SMTP
session for every recipient of a message (every RCPT command), and after the contents of the
message have been received, respectively. The names of the lists are acl_check_rcpt and
acl_check_data, and we will come to their definitions below, in the ACL section of the configuration.
The RCPT ACL controls which recipients are accepted for an incoming message — if a configuration

60 The default configuration file (7)

does not provide an ACL to check recipients, no SMTP mail can be accepted. The DATA ACL allows
the contents of a message to be checked.

Two commented-out option settings are next:

av_scanner = clamd:/tmp/clamd
spamd_address = 127.0.0.1 783

These are example settings that can be used when Exim is compiled with the content-scanning
extension. The first specifies the interface to the virus scanner, and the second specifies the interface
to SpamAssassin. Further details are given in chapter |44

Three more commented-out option settings follow:

tls_advertise_hosts = *
tls_certificate = /etc/ssl/exim.crt
tls_privatekey = /etc/ssl/exim.pem

These are example settings that can be used when Exim is compiled with support for TLS (aka SSL)
as described in section The first one specifies the list of clients that are allowed to use TLS when
connecting to this server; in this case the wildcard means all clients. The other options specify where
Exim should find its TLS certificate and private key, which together prove the server’s identity to any
clients that connect. More details are given in chapter

Another two commented-out option settings follow:

daemon_smtp_ports = 25 : 465 : 587
tls_on_connect_ports = 465

These options provide better support for roaming users who wish to use this server for message
submission. They are not much use unless you have turned on TLS (as described in the previous
paragraph) and authentication (about which more in section . The usual SMTP port 25 is often
blocked on end-user networks, so RFC 4409 specifies that message submission should use port 587
instead. However some software (notably Microsoft Outlook) cannot be configured to use port 587
correctly, so these settings also enable the non-standard “smtps” (aka “ssmtp”) port 465 (see section

13.4).
Two more commented-out options settings follow:

qualify_domain =
qualify_ recipient =

The first of these specifies a domain that Exim uses when it constructs a complete email address from
a local login name. This is often needed when Exim receives a message from a local process. If you
do not set qualify_domain, the value of primary_hostname is used. If you set both of these options,
you can have different qualification domains for sender and recipient addresses. If you set only the
first one, its value is used in both cases.

The following line must be uncommented if you want Exim to recognize addresses of the form
user@[10.11.12.13] that is, with a “domain literal” (an IP address within square brackets) instead of a
named domain.

allow_domain_literals

The RFCs still require this form, but many people think that in the modern Internet it makes little
sense to permit mail to be sent to specific hosts by quoting their IP addresses. This ancient format has
been used by people who try to abuse hosts by using them for unwanted relaying. However, some
people believe there are circumstances (for example, messages addressed to postmaster) where
domain literals are still useful.

The next configuration line is a kind of trigger guard:
never_users = root

It specifies that no delivery must ever be run as the root user. The normal convention is to set up root
as an alias for the system administrator. This setting is a guard against slips in the configuration. The
list of users specified by never_users is not, however, the complete list; the build-time configuration

61 The default configuration file (7)

in Local/Makefile has an option called FIXED_NEVER_USERS specifying a list that cannot be
overridden. The contents of never_users are added to this list. By default FIXED_NEVER_USERS
also specifies root.

When a remote host connects to Exim in order to send mail, the only information Exim has about the
host’s identity is its IP address. The next configuration line,

host_lookup = *

specifies that Exim should do a reverse DNS lookup on all incoming connections, in order to get a
host name. This improves the quality of the logging information, but if you feel it is too expensive,
you can remove it entirely, or restrict the lookup to hosts on “nearby” networks. Note that it is not
always possible to find a host name from an IP address, because not all DNS reverse zones are
maintained, and sometimes DNS servers are unreachable.

The next two lines are concerned with ident callbacks, as defined by RFC 1413 (hence their names):

rfcl41l3_hosts = *
rfcl413_query_timeout = Os

These settings cause Exim to avoid ident callbacks for all incoming SMTP calls. Few hosts offer
RFC1413 service these days; calls have to be terminated by a timeout and this needlessly delays the
startup of an incoming SMTP connection. If you have hosts for which you trust RFC1413 and need
this information, you can change this.

This line enables an efficiency SMTP option. It is negotiated by clients and not expected to cause
problems but can be disabled if needed.

prdr_enable = true

When Exim receives messages over SMTP connections, it expects all addresses to be fully qualified
with a domain, as required by the SMTP definition. However, if you are running a server to which
simple clients submit messages, you may find that they send unqualified addresses. The two
commented-out options:

sender_unqualified_hosts =
recipient_unqualified_hosts =

show how you can specify hosts that are permitted to send unqualified sender and recipient addresses,
respectively.

The log_selector option is used to increase the detail of logging over the default:

log_selector = +smtp_protocol_error +smtp_syntax_error \
+tls_certificate_verified

The percent_hack_domains option is also commented out:
percent_hack_domains =

It provides a list of domains for which the “percent hack™ is to operate. This is an almost obsolete
form of explicit email routing. If you do not know anything about it, you can safely ignore this topic.

The next two settings in the main part of the default configuration are concerned with messages that
have been “frozen” on Exim’s queue. When a message is frozen, Exim no longer continues to try to
deliver it. Freezing occurs when a bounce message encounters a permanent failure because the sender
address of the original message that caused the bounce is invalid, so the bounce cannot be delivered.
This is probably the most common case, but there are also other conditions that cause freezing, and
frozen messages are not always bounce messages.

ignore_bounce_errors_after = 2d
timeout_frozen_after = 7d

The first of these options specifies that failing bounce messages are to be discarded after 2 days on the
queue. The second specifies that any frozen message (whether a bounce message or not) is to be
timed out (and discarded) after a week. In this configuration, the first setting ensures that no failing
bounce message ever lasts a week.

62 The default configuration file (7)

Exim queues it’s messages in a spool directory. If you expect to have large queues, you may consider
using this option. It splits the spool directory into subdirectories to avoid file system degradation from
many files in a single directory, resulting in better performance. Manual manipulation of queued
messages becomes more complex (though fortunately not often needed).

split_spool_directory = true

In an ideal world everybody follows the standards. For non-ASCII messages RFC 2047 is a standard,
allowing a maximum line length of 76 characters. Exim adheres that standard and won’t process
messages which violate this standard. (Even ${rfc2047:...} expansions will fail.) In particular, the
Exim maintainers have had multiple reports of problems from Russian administrators of issues until
they disable this check, because of some popular, yet buggy, mail composition software.

check_rfc2047_length = false

If you need to be strictly RFC compliant you may wish to disable the 8BITMIME advertisement. Use
this, if you exchange mails with systems that are not 8-bit clean.

accept_8bitmime = false

Libraries you use may depend on specific environment settings. This imposes a security risk (e.g.
PATH). There are two lists: keep_environment for the variables to import as they are, and add_
environment for variables we want to set to a fixed value. Note that TZ is handled separately, by the
$%timezone%$ runtime option and by the TIMEZONE_DEFAULT buildtime option.

keep_environment = ~LDAP
add_environment = PATH=/usr/bin::/bin

7.2 ACL configuration
In the default configuration, the ACL section follows the main configuration. It starts with the line
begin acl

and it contains the definitions of two ACLs, called acl_check_rcpt and acl_check_data, that were
referenced in the settings of acl_smtp_rcpt and acl_smtp_data above.

The first ACL is used for every RCPT command in an incoming SMTP message. Each RCPT
command specifies one of the message’s recipients. The ACL statements are considered in order, until
the recipient address is either accepted or rejected. The RCPT command is then accepted or rejected,
according to the result of the ACL processing.

acl_check_rcpt:
This line, consisting of a name terminated by a colon, marks the start of the ACL, and names it.
accept hosts =

This ACL statement accepts the recipient if the sending host matches the list. But what does that
strange list mean? It doesn’t actually contain any host names or IP addresses. The presence of the
colon puts an empty item in the list; Exim matches this only if the incoming message did not come
from a remote host, because in that case, the remote hostname is empty. The colon is important.
Without it, the list itself is empty, and can never match anything.

What this statement is doing is to accept unconditionally all recipients in messages that are submitted
by SMTP from local processes using the standard input and output (that is, not using TCP/IP). A
number of MUAs operate in this manner.

deny message = Restricted characters in address
domains = +local_domains
local_parts = ~[.] : A.*[@%!/|]

deny message = Restricted characters in address
domains = !+local_domains
local_parts = ~[./|1 ¢ AR Ies] r AU/

63 The default configuration file (7)

These statements are concerned with local parts that contain any of the characters “@”, “%?”, “!”, “/”,
“I”, or dots in unusual places. Although these characters are entirely legal in local parts (in the case
of “@” and leading dots, only if correctly quoted), they do not commonly occur in Internet mail
addresses.

The first three have in the past been associated with explicitly routed addresses (percent is still
sometimes used — see the percent_hack_domains option). Addresses containing these characters are
regularly tried by spammers in an attempt to bypass relaying restrictions, and also by open relay
testing programs. Unless you really need them it is safest to reject these characters at this early stage.
This configuration is heavy-handed in rejecting these characters for all messages it accepts from
remote hosts. This is a deliberate policy of being as safe as possible.

The first rule above is stricter, and is applied to messages that are addressed to one of the local
domains handled by this host. This is implemented by the first condition, which restricts it to domains
that are listed in the local_domains domain list. The “+” character is used to indicate a reference to a
named list. In this configuration, there is just one domain in local_domains, but in general there may
be many.

The second condition on the first statement uses two regular expressions to block local parts that
begin with a dot or contain “@”, “%”, “!”, “/”, or “|”. If you have local accounts that include these
characters, you will have to modify this rule.

Empty components (two dots in a row) are not valid in RFC 2822, but Exim allows them because they
have been encountered in practice. (Consider the common convention of local parts constructed as
“first-initial.second-initial.family-name” when applied to someone like the author of Exim, who has
no second initial.) However, a local part starting with a dot or containing “/../” can cause trouble if it
is used as part of a file name (for example, for a mailing list). This is also true for local parts that
contain slashes. A pipe symbol can also be troublesome if the local part is incorporated unthinkingly
into a shell command line.

The second rule above applies to all other domains, and is less strict. This allows your own users to
send outgoing messages to sites that use slashes and vertical bars in their local parts. It blocks local
parts that begin with a dot, slash, or vertical bar, but allows these characters within the local part.
However, the sequence “/../” is barred. The use of “@”, “%”, and “!” is blocked, as before. The
motivation here is to prevent your users (or your users’ viruses) from mounting certain kinds of attack
on remote sites.

accept local_parts = postmaster
domains = +local_domains

This statement, which has two conditions, accepts an incoming address if the local part is postmaster
and the domain is one of those listed in the local_domains domain list. The “+” character is used to
indicate a reference to a named list. In this configuration, there is just one domain in local_domains,
but in general there may be many.

The presence of this statement means that mail to postmaster is never blocked by any of the subse-
quent tests. This can be helpful while sorting out problems in cases where the subsequent tests are
incorrectly denying access.

require verify = sender

This statement requires the sender address to be verified before any subsequent ACL statement can be
used. If verification fails, the incoming recipient address is refused. Verification consists of trying to
route the address, to see if a bounce message could be delivered to it. In the case of remote addresses,
basic verification checks only the domain, but callouts can be used for more verification if required.
Section E3.44. discusses the details of address verification.

accept hosts +relay_from hosts
control = submission

This statement accepts the address if the message is coming from one of the hosts that are defined as
being allowed to relay through this host. Recipient verification is omitted here, because in many cases
the clients are dumb MUAs that do not cope well with SMTP error responses. For the same reason,
the second line specifies “submission mode” for messages that are accepted. This is described in

64 The default configuration file (7)

detail in section it causes Exim to fix messages that are deficient in some way, for example,
because they lack a Date: header line. If you are actually relaying out from MTAs, you should
probably add recipient verification here, and disable submission mode.

accept authenticated = *
control = submission

This statement accepts the address if the client host has authenticated itself. Submission mode is again
specified, on the grounds that such messages are most likely to come from MUAs. The default
configuration does not define any authenticators, though it does include some nearly complete
commented-out examples described in This means that no client can in fact authenticate until you
complete the authenticator definitions.

require message = relay not permitted
domains = +local_domains : +relay_to_domains

This statement rejects the address if its domain is neither a local domain nor one of the domains for
which this host is a relay.

require verify = recipient

This statement requires the recipient address to be verified; if verification fails, the address is rejected.

deny message = rejected because $sender_host_address \
is in a black list at $dnslist_domain\n\
Sdnslist_text

dnslists = black.list.example

#

warn dnslists = black.list.example

add_header = X-Warning: $sender_host_address is in \
a black list at $dnslist_domain

log_message = found in $dnslist_domain

These commented-out lines are examples of how you could configure Exim to check sending hosts
against a DNS black list. The first statement rejects messages from blacklisted hosts, whereas the
second just inserts a warning header line.

require verify = csa

This commented-out line is an example of how you could turn on client SMTP authorization (CSA)
checking. Such checks do DNS lookups for special SRV records.

accept

The final statement in the first ACL unconditionally accepts any recipient address that has success-
fully passed all the previous tests.

acl_check_data:

This line marks the start of the second ACL, and names it. Most of the contents of this ACL are
commented out:

deny malware = *
message This message contains a virus \
(Smalware_name) .

These lines are examples of how to arrange for messages to be scanned for viruses when Exim has
been compiled with the content-scanning extension, and a suitable virus scanner is installed. If the
message is found to contain a virus, it is rejected with the given custom error message.

warn spam = nobody

message = X-Spam_score: $spam_score\n\

X—-Spam_score_int: S$spam_score_int\n\
X-Spam_bar: S$spam_bar\n\

X-Spam_report: S$spam_report

65 The default configuration file (7)

These lines are an example of how to arrange for messages to be scanned by SpamAssassin when
Exim has been compiled with the content-scanning extension, and SpamAssassin has been installed.
The SpamAssassin check is run with nobody as its user parameter, and the results are added to the
message as a series of extra header line. In this case, the message is not rejected, whatever the spam
score.

accept

This final line in the DATA ACL accepts the message unconditionally.

7.3 Router configuration
The router configuration comes next in the default configuration, introduced by the line
begin routers

Routers are the modules in Exim that make decisions about where to send messages. An address is
passed to each router in turn, until it is either accepted, or failed. This means that the order in which
you define the routers matters. Each router is fully described in its own chapter later in this manual.
Here we give only brief overviews.

domain_literal:

driver = ipliteral
domains = !+local_domains
transport = remote_smtp

This router is commented out because the majority of sites do not want to support domain literal
addresses (those of the form user@/10.9.8.7]). If you uncomment this router, you also need to
uncomment the setting of allow_domain_literals in the main part of the configuration.

dnslookup:
driver = dnslookup
domains = ! +4+local_domains
transport = remote_smtp
ignore_target_hosts = 0.0.0.0 : 127.0.0.0/8
no_more

The first uncommented router handles addresses that do not involve any local domains. This is
specified by the line

domains = ! +4+local_domains

The domains option lists the domains to which this router applies, but the exclamation mark is a
negation sign, so the router is used only for domains that are not in the domain list called
local_domains (which was defined at the start of the configuration). The plus sign before
local_domains indicates that it is referring to a named list. Addresses in other domains are passed on
to the following routers.

The name of the router driver is dnslookup, and is specified by the driver option. Do not be confused
by the fact that the name of this router instance is the same as the name of the driver. The instance
name is arbitrary, but the name set in the driver option must be one of the driver modules that is in
the Exim binary.

The dnslookup router routes addresses by looking up their domains in the DNS in order to obtain a
list of hosts to which the address is routed. If the router succeeds, the address is queued for the
remote_smitp transport, as specified by the transport option. If the router does not find the domain in
the DNS, no further routers are tried because of the no_more setting, so the address fails and is
bounced.

The ignore_target_hosts option specifies a list of IP addresses that are to be entirely ignored. This
option is present because a number of cases have been encountered where MX records in the DNS
point to host names whose IP addresses are 0.0.0.0 or are in the 127 subnet (typically 127.0.0.1).
Completely ignoring these IP addresses causes Exim to fail to route the email address, so it bounces.

66 The default configuration file (7)

Otherwise, Exim would log a routing problem, and continue to try to deliver the message periodically
until the address timed out.

system_aliases:

driver = redirect

allow_fail

allow_defer

data = ${lookup{$local_part}lsearch{/etc/aliases}}
user = exim

file_transport = address_file

pipe_transport = address_pipe

Control reaches this and subsequent routers only for addresses in the local domains. This router
checks to see whether the local part is defined as an alias in the /etc/aliases file, and if so, redirects it
according to the data that it looks up from that file. If no data is found for the local part, the value of
the data option is empty, causing the address to be passed to the next router.

/etc/aliases is a conventional name for the system aliases file that is often used. That is why it is
referenced by from the default configuration file. However, you can change this by setting SYSTEM_
ALIASES_FILE in Local/Makefile before building Exim.

userforward:
driver = redirect
check_local_user

local_part_suffix = +* : —-*

local_part_suffix_optional
file = Shome/.forward

allow_filter
no_verify

no_expn
check_ancestor

file_transport = address_file
pipe_transport = address_pipe

reply_transport = address_reply

This is the most complicated router in the default configuration. It is another redirection router, but
this time it is looking for forwarding data set up by individual users. The check_local_user setting
specifies a check that the local part of the address is the login name of a local user. If it is not, the
router is skipped. The two commented options that follow check_local_user, namely:

local_part_suffix = +* : —-*
local_part_suffix_optional

show how you can specify the recognition of local part suffixes. If the first is uncommented, a suffix
beginning with either a plus or a minus sign, followed by any sequence of characters, is removed from
the local part and placed in the variable $local_part_suffix. The second suffix option specifies that the
presence of a suffix in the local part is optional. When a suffix is present, the check for a local login
uses the local part with the suffix removed.

When a local user account is found, the file called .forward in the user’s home directory is consulted.
If it does not exist, or is empty, the router declines. Otherwise, the contents of .forward are interpreted
as redirection data (see chapterfor more details).

Traditional .forward files contain just a list of addresses, pipes, or files. Exim supports this by default.
However, if allow_filter is set (it is commented out by default), the contents of the file are interpreted
as a set of Exim or Sieve filtering instructions, provided the file begins with “#Exim filter” or “#Sieve
filter”, respectively. User filtering is discussed in the separate document entitled Exim’s interfaces to
mail filtering.

The no_verify and no_expn options mean that this router is skipped when verifying addresses, or
when running as a consequence of an SMTP EXPN command. There are two reasons for doing this:

67 The default configuration file (7)

(1) Whether or not a local user has a .forward file is not really relevant when checking an address
for validity; it makes sense not to waste resources doing unnecessary work.

(2) More importantly, when Exim is verifying addresses or handling an EXPN command during an
SMTP session, it is running as the Exim user, not as root. The group is the Exim group, and no
additional groups are set up. It may therefore not be possible for Exim to read users’ .forward
files at this time.

The setting of check_ancestor prevents the router from generating a new address that is the same as
any previous address that was redirected. (This works round a problem concerning a bad interaction
between aliasing and forwarding — see section [22.5)).

The final three option settings specify the transports that are to be used when forwarding generates a
direct delivery to a file, or to a pipe, or sets up an auto-reply, respectively. For example, if a .forward
file contains

a.nother@elsewhere.example, /home/spgr/archive

the delivery to /home/spgr/archive is done by running the address_file transport.

localuser:
driver = accept
check_local_user

local_part_suffix = +* : —-*

local_part_suffix_optional
transport = local_delivery

The final router sets up delivery into local mailboxes, provided that the local part is the name of a
local login, by accepting the address and assigning it to the local_delivery transport. Otherwise, we
have reached the end of the routers, so the address is bounced. The commented suffix settings fulfil
the same purpose as they do for the userforward router.

7.4 Transport configuration

Transports define mechanisms for actually delivering messages. They operate only when referenced
from routers, so the order in which they are defined does not matter. The transports section of the
configuration starts with

begin transports
One remote transport and four local transports are defined.

remote_smtp:
driver = smtp
hosts_try_prdr = *

This transport is used for delivering messages over SMTP connections. The list of remote hosts
comes from the router. The hosts_try_prdr option enables an efficiency SMTP option. It is nego-
tiated between client and server and not expected to cause problems but can be disabled if needed. All
other options are defaulted.

local_delivery:
driver = appendfile
file = /var/mail/$local_part
delivery_date_add
envelope_to_add
return_path_add

group = mail

mode = 0660

This appendfile transport is used for local delive